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1 Introduction

Time series analysis involves predicting future values of a time series based on its past

behavior, and two commonly used methods for this are the Autoregressive (AR) model

and the Moving Average (MA) model. The AR model predicts future behavior by taking

into account past values of the series, while the MA model forecasts future values by

considering the errors in predicting the series’ past behavior. The ARIMA (Autoregressive

Integrated Moving Average) model is a more general framework that combines both the

AR and MA models, as well as differencing to remove non-stationarity in the time series

data. This allows for the modeling of a wider range of time series patterns.

To fully understand these models, it is essential to have a good understanding of poly-

nomial math, including polynomial functions, their properties, and how they can be used

to compute MA and AR representations of ARMA models. In these lecture notes, we will

cover these topics in depth.

2 Polynomial Math

Polynomial math is a powerful tool for comprehending time series processes. In this section,

I demonstrate the fundamental operations of polynomial mathematics that are necessary

for working with ARMA processes in the subsequent sections.

2.1 Geometric Series Formula

The formula for the sum of a geometric series is given by:

b∑
s=a

xs =


xa−xb+1

1−x
if x ̸= 1

1 + b− a if x = 1

When b approaches infinity, the sum remains finite if |x| < 1. This occurs because xs ap-

proaches zero exponentially as s increases, ensuring the series converges even with infinitely
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many terms. The formula for the infinite sum of a power series, known as the geometric

series formula, is given as follows:

∞∑
s=a

xs =
xa

1− x
if |x| < 1

Assuming a = 0, we have xa = 1 and thus (1− x)−1 = 1 + x+ x2 + x3 + .... In the subse-

quent sections, we typically utilize the geometric series formula to expand (1− x)−1 into an

infinite sum. Therefore, we can begin with the right-hand side expression of the geometric

series formula and substitute it with the left-hand side expression.

Proof. For x ̸= 1, we rearrange and simplify the series:

b∑
s=a

xs =
b∑

s=a

xs+1 + xa − xb+1 = x

(
b∑

s=a

xs

)
+ xa − xb+1

Now, the same sum appears on both the left- and right-hand sides, which implies that we

can solve for it to obtain the formula:

(1− x)
b∑

s=a

xs = xa − xb+1 ⇒
b∑

s=a

xs =
xa − xb+1

1− x

As |x| < 1, lims→∞ xs = 0 justifies omitting xb+1 when b approaches infinity. For x = 1,

the sum becomes:

b∑
s=a

1 = 1︸︷︷︸
a

+ 1︸︷︷︸
a+1

+ 1︸︷︷︸
a+2

+ 1︸︷︷︸
a+3

+ . . .+ 1︸︷︷︸
a+(b−a)

= 1 + b− a

We can also employ the modified formula for the sum of a power series where each term
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is multiplied by its corresponding power index:

b∑
s=a

sxs =


x1+a−x2+b

(1−x)2
+ axa−(b+1)x1+b

1−x
if x ̸= 1

a+ (b−a)(b−a+1)
2

if x = 1

This formula is derived by differentiating the earlier geometric series formula with respect

to x. When |x| < 1, the terms xb+2 and xb+1 become zero as the series goes to infinity.

Proof. For x ̸= 1, apply the derivative to the geometric series formula with respect to x

and utilize the quotient rule:

d

dx

(
b∑

s=a

xs

)
=

d

dx

Å
xa − xb+1

1− x

ã
b∑

s=a

d

dx
xs =

[
d
dx

(
xa − xb+1

)]
(1− x)−

(
xa − xb+1

) [
d
dx
(1− x)

]
(1− x)2

b∑
s=a

sxs−1 =

[
axa−1 − (b+ 1)xb

]
(1− x)−

(
xa − xb+1

)
[−1]

(1− x)2

b∑
s=a

sxs =
x1+a − x2+b

(1− x)2
+
axa − (b+ 1)x1+b

1− x

For x = 1, the sum becomes:

b∑
s=a

s = (a+ 0) + (a+ 1) + (a+ 2) + · · ·+ b

= a+ 1 + 2 + · · ·+ (b− a) = a+
b−a∑
s=1

s

= a+
(b− a)(b− a+ 1)

2

Here, the last equality uses the formula for the sum of the first b− a integers, a topic that

will be explored further when we discuss triangular numbers in Section 2.4.
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2.2 Polynomial, Roots, and Factored Form

A polynomial of degree n is defined as follows:

f(z) = a0 + a1z
1 + · · ·+ anz

n

The roots {r1, . . . , rn} of the polynomial are all values of z where the polynomial is

equal to zero:

f(r) = a0 + a1r
1 + · · ·+ anr

n = 0, ∀r ∈ {r1, . . . , rn}

We will show below that a polynomial of degree n has exactly n roots. To find the

roots, we can write the polynomial in factored form as follows:

f(z) = an(z − r1)(z − r2) · · · (z − rn)

where {r1, . . . , rn} are the roots of the polynomial, because f(ri) = 0, for all i.

For example, consider the polynomial:

f(z) = 18 + 15z + 3z2 = 3(z + 2)(z + 3)

which implies that the roots are {r1, r2} = {−2,−3}.

To find the factors of a quadratic polynomial (i.e., a polynomial of degree n = 2),

we can consider the general case:

f(z) = a2(x+ p)(x+ q)

= a2pq︸︷︷︸
a0

+ a2(p+ q)︸ ︷︷ ︸
a1

x+ a2︸︷︷︸
a2

x2

Thus, for the example above, we can divide by a2 = 3 to get f(z) = 6 + 5z + z2, and then

we need to find p and q such that pq = 6 and (p+ q) = 5, which is the case for p = 2 and
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q = 3, and therefore {r1, r2} = {−p,−q}.

Alternatively, we can apply the quadratic formula to find the roots:

r =
−a1 ±

√
(a1)2 − 4(a2)(a0)

2(a2)

=
−15±

√
(15)2 − 4(3)(18)

2(3)
=

−15±
√
9

6
=


−12/6 = −2

−18/6 = −3

Finally, the roots of a polynomial can also be computed in R using the polyroot func-

tion, which takes the coefficients {a0, a1, . . . , an} of the polynomial as input and produces

the roots {r1, r2, . . . , rn} as output: {r} polyroot(c(18,15,3)) [1] -2+0i -3+0i

Now, let’s show that a polynomial of degree n has exactly n roots. For this we use the

Fundamental Theorem of Algebra, which states that every non-constant polynomial

has at least one (complex) root, and the Polynomial Factor Theorem, which states

that if f(z) is a polynomial of degree n, then there exists a complex number r ∈ C and a

polynomial g(z) of degree n− 1 such that:

f(z) = (z − r)g(z)

where r is a root, because f(r) = 0. Note that the root can be a complex number, which

is a number that has both a real and an imaginary part, e.g. r = 3 + 2i. The imaginary part

includes an imaginary unit i, defined as the object that satisfies i2 = −1. When expanding

the polynomial f(z), the imaginary units cancel out, so complex numbers can be thought

of as a useful tool to simplify mathematical calculations.
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If we apply the Polynomial Factor Theorem n times we get

f(z) = a0 + a1z
1 + · · ·+ anz

n

= (z − r1)
(
b0 + b1z

1 + · · ·+ bn−1z
n−1
)

= (z − r1)(z − r2)
(
c0 + c1z

1 + · · ·+ cn−2z
n−2
)

...

= (z − r1)(z − r2)(z − r3) · · · (z − rn)d

where d = an, because expansion of this polynomials results in a coefficient of d for zn,

which needs to be an according to f(z).

Hence, once we derive the roots of the polynomial, we can write the polynomial in

factored form (as opposed to its normal form):

Normal Form : f(z) = a0 + a1z
1 + · · ·+ anz

n = a0 +
n∑

k=1

akz
k

Factored Form :

Slope = 1: f(z) = an(z − r1) · · · (z − rn) = an

n∏
k=1

(z − rk)

Constant = 1: f(z) = a0
(
1− r−1

1 z
)
· · ·
(
1− r−1

n z
)
= a0

n∏
k=1

(
1− r−1

k z
)

The factored form with a normalized constant = 1 can be derived by pre-multiplying the

original factored form by (−r1) · · · (−rn), and then using the fact that expansion has to

result in an intercept of a0 so that (−r1) · · · (−rn) an = a0 has to hold.

2.3 Reciprocal of a Polynomial

The reciprocal f (z)−1 of a polynomial f (z) is defined as the function that, when multiplied

with the polynomial, yields the constant function 1:

f (z) f (z)−1 =
(
a0 + a1z

1 + · · ·+ anz
n
) (
c0 + c1z

1 + c2z
2 + · · ·+ c−1z

−1 + c−2z
−2 + · · ·

)
= 1
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The reciprocal can be expressed as an infinite series, which is a function that can be

expressed as an infinite sum of terms, i.e., a sum that continues forever. Specifically, we

can express the reciprocal as a Laurent series, where the coefficients can be computed

using the Cauchy integral formula, as discussed below. Note that an infinite series is not

considered a polynomial because a polynomial has to have a finite degree.

It is important to note that the reciprocal of a polynomial is not the same as its inverse

function, denoted as f−1 (z), which satisfies f
(
f−1 (z)

)
= z. In general, f

Ä
f (z)−1

ä
̸= z.

To compute the reciprocal f (z)−1, we can first write the factored form of the polynomial

with the constant of the factors normalized to one, and take the inverse of each factor. Then,

we can use the geometric series formula to expand each inverted factor
(
1− r−1

k z
)−1

into

an infinite series 1 + r−1
k z +

(
r−1
k z
)2

+ . . .. However, there are cases where the geometric

series formula does not apply, such as when
∣∣r−1

k z
∣∣ > 1 for some k, in which case we need

to rewrite the inverted factor as
(
−r−1

k z
)−1 (

1− rkz
−1
)−1

, and apply the geometric series

formula to the latter term, where
∣∣rkz−1

∣∣ < 1. The case where
∣∣r−1

k z
∣∣ = 1 will not be

relevant for the study of time series processes.

Let’s consider the case where the products of z with all inverted roots are inside the

unit circle, i.e.
∣∣r−1

k z
∣∣ < 1 for all k. This is for example the case when the polynomial f (z)

is defined for |z| ≤ 1, and all inverted roots are inside the unit circle, i.e.
∣∣r−1

k

∣∣ < 1, for all

k. In this case, we can apply the geometric series formula directly to all inverted factors of

the factored form, and obtain the reciprocal as follows:

f (z)−1 =
1

a0

n∏
k=1

(
1− r−1

k z
)−1

,
∣∣r−1

k z
∣∣ < 1, ∀k

=
1

a0

n∏
k=1

(
1 + r−1

k z + r−2
k z2 + r−3

k z3 + · · ·
)

= c0 + c1z + c2z
2 + · · · , cs =

1

a0

∑
\scriptsize

j1, j2, . . . , jn ≥ 0

j1 + j2 + · · ·+ jn = s

r−j1
1 r−j2

2 · · · r−jn
n
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where the second equation follows from the geometric series formula, and the third equation

expands the polynomial according to Cauchy’s product formula.

Now let’s consider the more general case where the products of z with the inverted roots

are inside the unit circle for m roots, and outside the unit circle for the remaining n−m

roots. Without loss of generality, we can order the roots so that
∣∣r−1

i z
∣∣ < 1 for i ≤ m, and∣∣r−1

l z
∣∣ > 1, for l > m. Therefore, we need to rewrite the last n−m inverted factors so

that the geometric series formula applies. By putting everything together, the reciprocal

of f (z) can be expressed as:

f (z)−1 =
1

a0

n∏
k=1

(
1− r−1

k z
)−1

,
∣∣r−1

i z
∣∣ < 1 <

∣∣r−1
l z
∣∣ , i ≤ m < l

=
1

a0

m∏
i=1

(
1− r−1

i z
)−1

n∏
l=m+1

(
−r−1

l z
)−1 (

1− rlz
−1
)−1

=

∏n
l=m+1 (−rl)

a0
z−(n−m)

m∏
i=1

(
1 + r−1

i z + r−2
i z2 + · · ·

) n∏
l=m+1

(
1 + rlz

−1 + r2l z
−2 + · · ·

)
=

(−rm+1) · · · (−rn)
a0

z−(n−m)
(
1 + b1z + b2z

2 + · · ·
) (

1 + d1z
−1 + d2z

−2 + · · ·
)

= c0 + c1z + c2z
2 + · · ·+ c−1z

−1 + c−2z
−2 + · · ·

where the coefficients are obtained using Cauchy’s product formula:

bs =
∑

\scriptsize
j1, j2, . . . , jm ≥ 0

j1 + j2 + · · ·+ jm = s

r−j1
1 r−j2

2 · · · r−jm
m

ds =
∑

\scriptsize
jm+1, jm+2, . . . , jn ≥ 0

jm+1 + jm+2 + · · ·+ jn = s

r
jm+1

m+1 r
jm+2

m+2 · · · rjnn

cs =
(−rm+1) · · · (−rn)

a0

∑
\scriptsize

i, j ≥ 0

i− j = s+ (n−m)

bidj
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Note that for the analysis of ARIMA processes, we typically consider “stable” polynomi-

als f (z) defined for |z| ≤ 1, where all inverted roots are inside the unit circle, i.e.
∣∣r−1

k

∣∣ < 1,

for all k. This ensures that the reciprocal f (z)−1 can be expressed as an infinite series

without any negative powers of z, allowing us to use the simpler formula derived earlier.

However, when dealing with rational expectations models, the more general formula will

be useful.

Now that we have covered the necessary polynomial math tools, let’s move on to dis-

cussing ARIMA models.

2.4 Faulhaber’s Formula

Faulhaber’s formula, named after mathematician Johann Faulhaber, expresses the sum

of the pth powers of the first n positive integers:

n∑
k=1

kp = 1p + 2p + 3p + · · ·+ np =
1

p+ 1

p∑
k=0

Ç
p+ 1

k

å
Bkn

p−k+1

Here,

Ç
p+ 1

k

å
=

(p+ 1)!

k! (p+ 1− k)!
is the binomial coefficient “p+ 1 choose k”, where k!

= k × (k − 1)× (k − 2)× · · · × 2× 1 represents the factorial of k, andBk is theBernoulli

number, where {B1, B2, . . . } =

ß
1

2
,
1

6
, 0,− 1

30
, 0,

1

42
, 0,− 1

30
, . . .

™
.

For p = 1, we have the triangular numbers:

n∑
k=1

k1 =
n(n+ 1)

2
=

1

2
(n2 + n)

and for p = 2, we have the square pyramidal numbers:

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
=

1

3
(n3 + 3

2
n2 + 1

2
n)

and the formulae for p ≥ 3 will not be relevant for this lecture. However, we will use the

fact that the sum of the pth powers of the first n positive integers is a polynomial in n of
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order p+ 1.

3 Univariate Stationary Time Series

3.1 Autoregressive Moving Average (ARMA) Model

Consider a moving average process of order q, denoted as MA(q):

Yt = µ+ θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q + ϵt, ϵt
i.i.d.∼ N

(
0, σ2

ϵ

)
where i.i.d. means that the residuals ϵt are independent and identically distributed over

time t.

MA processes are known to have a short memory, meaning that information about

current and past realizations of {Yt} is only useful for making forecasts at short horizons

and becomes useless beyond horizon q + 1. This is because beyond this horizon, Yt+q+1 and

Yt do not have any shocks in common and are thus independent, rendering the information

about Yt useless for predicting Yt+q+1.

In contrast, consider an autoregressive process of order p, denoted as AR(p):

Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + ϵt, ϵt
i.i.d.∼ N

(
0, σ2

ϵ

)
where i.i.d. means independent and identically distributed.

AR processes have a longer memory than MA processes because even though Yt only

directly depends on p lags, the lagged variables again depend on p lags, and so on, creating

a chain of indirect dependencies. Therefore, there is a non-zero correlation between Yt

and Yt−l for any finite integer l. However, the autocorrelation function of a stationary AR

process decays exponentially, which means that past information becomes exponentially

less relevant the further into the future the prediction goes.

Finally, consider the following generalization of an MA and AR process, an autoregres-
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sive moving average process with p AR lags and q MA lags, denoted asARMA(p, q):

Yt = c+ ϕ1Yt−1 + · · ·+ ϕpYt−p + θ1ϵt−1 + · · ·+ θqϵt−q + ϵt, ϵt
i.i.d.∼ N

(
0, σ2

ϵ

)
where i.i.d. means independent and identically distributed.

ARMA processes combine the properties of MA and AR processes, making them a

powerful forecasting tool.

3.2 Stationarity

A process is said to be stationary if its statistical properties do not change over time.

Formally, stationarity means that the distribution of the random varibles Yt in the stochastic

process {Yt} is the same for all time periods t. A weaker form of stationarity is weak

stationarity, which requires that the mean and covariance of the process are constant

over time. More specifically, for a weakly stationary process {Yt}, we have E [Yt] = µ,

where µ is a constant, and Cov (Yt, Yt−k) = γk, where γk depends only on the time lag k

and not on time t.

Note that all finite-order MA processes are stationary. This is because MA processes

solely depend on a constant and on shocks that have the same distribution over time.

Infinite-order MA processes are also stationary as long as the coefficients decay fast enough,

for example, if they decay exponentially. If the coefficients do not decay sufficiently fast,

the variance of the infinite-order MA process goes to infinity, making it impossible for the

process to be covariance stationary.

To determine whether AR processes are stationary, verify if the process can be rewritten

to depend only on stationary shocks, which simplifies the task of determining whether the

AR process is stationary. For instance, consider an AR(1) process. By repeatedly replacing

the right-hand side variable over and over again, the AR(1) process can be expressed as
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follows:

Yt = c+ ϕ1Yt−1 + ϵt

= c+ ϕ1 (c+ ϕ1Yt−2 + ϵt−1) + ϵt

= c+ ϕ1 (c+ ϕ1 (c+ ϕ1Yt−3 + ϵt−2) + ϵt−1) + ϵt

...

=
(
1 + ϕ1 + ϕ2

1 + · · ·
)
c+ ϵt + ϕ1ϵt−1 + ϕ2

1ϵt−2 + · · ·+ lim
s→∞

ϕs
1Yt−s

Note that when |ϕ1| < 1, then lim
s→∞

ϕs
1 = 0, so Yt becomes a an infinite-order MA process,

where the coefficients decay exponentially, i.e. the coefficient ϕk
1 on ϵt−k goes to zero expo-

nentially when k increases. Therefore, |ϕ1| < 1 implies that the AR(1) process is stationary.

An exponential decay in the MA parameters implies stationarity because it permits the

use of the geometric series formula when computing the mean and covariances, ultimately

resulting in constant values for these statistics:

|ϕ1| < 1 : E [Yt] =
(
1 + ϕ1 + ϕ2

1 + · · ·
)
c =

c

1− ϕ1

Cov (Yt, Yt−k) = ϕk
1

(
1 + ϕ2

1 + ϕ4
1 + · · ·

)
σ2
ϵ =

ϕk
1σ

2
ϵ

1− ϕ2
1

As the order of an AR(p) or an ARMA(p, q) process increases (p ≥ 2), iterating on the

process to express it as a function of shocks becomes increasingly difficult. This is where

polynomial mathematics come in handy, which we will discuss further below. In short, the

ARMA(p, q) process has an infinite-order MA representation, with coefficients that decay

exponentially, and is thus stationary as long as the inverted roots of the AR lag polynomial

are all inside the unit circle. This statement will make more sense once we define these

objects.

Note that all stationary AR processes have an MA(∞) representation. More generally,

Wold’s Decomposition Theorem, also known as the MA Representation Theorem,

states that all covariance-stationary time series processes, including non-linear processes,

can be expressed as the sum of a deterministic component (such as an intercept or trend)
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and a stochastic component represented by an MA(∞) process. Hence, to check for sta-

tionarity, it is sufficient to express the process in terms of shocks, verify whether all terms

that do not belong to an MA(∞) cancel out, and ensure that the MA coefficients decay

sufficiently fast so that the covariances are finite.

3.3 Invertibility

An invertible process is one where the residuals of the process are linear functions of

current and past variables, {Yt, Yt−1, . . . }, as opposed to being a function of future variables

or both future and past variables. An AR process is by definition invertible, as it relates

current to past variables with a single residual ϵt, making the residual a linear function

of current and past variables. Hence, a process is invertible if it can be rewritten as an

(infinite-order) autoregressive (AR) process.

Invertibility is a desirable property in analyzing systems where the past has an effect on

the future but not vice versa, which is often the case in real-world applications. If an ARMA

process is not invertible, future variables would have an effect on current variables, making

analysis more complex. Furthermore, for an invertible ARMA process, observing a time

series up to time t, i.e. {y0, y1, . . . , yt}, means that we also observe all the shocks that have

occurred up to that point, i.e. {ϵ0, ϵ1, . . . , ϵt}. This is not the case under non-invertibility,

where past shocks may not be identifiable from the observed time series.

To demonstrate the necessary assumptions for invertibility of an MA process, consider

an MA(1) process and use the process to replace the lagged shocks over and over again:

Yt = µ+ θ1ϵt−1 + ϵt

= µ+ θ1 (Yt−1 − µ− θ1ϵt−2) + ϵt

= µ+ θ1 (Yt−1 − µ− θ1 (Yt−2 − µ− θ1ϵt−3)) + ϵt

...

=
Ä
1 + (−θ1) + (−θ1)2 + · · ·

ä
µ− (−θ1)Yt−1 − (−θ1)2 Yt−2 − · · · − lim

s→∞
(−θ1)s ϵt−s + ϵt
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Note that when |θ1| < 1, then lim
s→∞

(−θ1)s = 0, so that Yt is a linear function of past variables

{Yt−1, Yt−2, . . . } and the shock ϵt. Hence, |θ1| < 1 implies that the MA(1) process can be

expressed as an AR(∞) process and is thus invertible.

As the order of an MA(q) or an ARMA(p, q) process increases (q ≥ 2), iterating on

the process to express it as a function of current and past variables becomes increasingly

difficult. This is where polynomial mathematics come in handy, which we will discuss

further below. In short, the ARMA(p, q) process has an infinite-order AR representation,

and is thus invertible as long as the inverted roots of the MA lag polynomial are all inside

the unit circle. This statement will make more sense once we define these objects.

It turns out that all invertible MA(q) processes have an AR(∞) representation.

It is important to note that the direction of causality cannot be determined from

the data alone. The data only provides the covariance between Yt and Yt−1, and it is

not possible to determine whether the former depends on the latter or vice versa since

Cov(Yt, Yt−1) = Cov(Yt−1, Yt). This means that processes that relate current to past vari-

ables can produce identical moments as processes that relate current to future variables,

using the same parameters. Therefore, two completely different processes can be observa-

tionally equivalent. When estimating MA or ARMA models using statistical software such

as R, the program automatically chooses the invertible process instead of providing all the

processes that produce the same moments.

To illustrate this point, consider two MA(1) processes (a) and (b), where |θ1| < 1:

(a) Yt = µ+ θ1ϵt−1 + ϵt, ϵt
i.i.d.∼ N

(
0, σ2

ϵ

)
(b) Y ∗

t = µ+
1

θ1
ϵ∗t−1 + ϵ∗t , ϵ∗t = θ1ϵt+1

By iterating the former process backward and the latter forward, we get the AR(∞) process

derived above. However, model (b) relates current to future variables instead of current to
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past variables:

(a) Yt =
Ä
1 + (−θ1) + (−θ1)2 + · · ·

ä
µ− (−θ1)Yt−1 − (−θ1)2 Yt−2 − · · ·+ ϵt

(b) Y ∗
t =

Ä
1 + (−θ1) + (−θ1)2 + · · ·

ä
µ− (−θ1)Y ∗

t+1 − (−θ1)2 Y ∗
t+2 − · · ·+ ϵt

Even though both processes produce the same moments and are observationally equivalent,

statistical software like R will not provide model (b), since model (a) is the one that is

invertible. In contrast, when |θ1| > 1, then R would choose model (b), as it would be the

one that is invertible in that case. The only case when R cannot produce an invertible

process is when |θ1| = 1.

3.4 Lag Operator and Lag Polynomial

To analyze the properties of an ARMA process and compute its MA and AR representation,

it is convenient to represent the process in terms of lag operators and lag polynomials, and

then perform standard math operations on these polynomials.

The lag operator L, also known as the backshift operator, shifts the time period of

a variable one period back, such that LYt = Yt−1. Repeated application of the lag operator

k times gives LkYt = Lk−1Yt−1 = . . . = Yt−k. Moreover, the inverse of the lag operator shifts

the time period forward, such that L−1Yt = Yt+1. In general, L−hYt = Yt+h. for any positive

integer h.

Using the lag operator, we can express the ARMA process in terms of lag polynomials:

ϕ (L)Yt = c+ θ (L) ϵt, ϕ (L) = 1− ϕ1L− ϕ2L
2 − · · · − ϕpL

p

θ (L) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

where ϕ (L) is the AR lag polynomial and θ (L) is the MA lag polynomial.

The benefit of using lag polynomials is that we can apply the same polynomial math

tools to them as we do with ordinary polynomials, even though they’re functions of an

operator L rather than functions of a variable z. We simply replace the lag operator with
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a variable z, define the variable range to |z| ≤ 1, perform standard polynomial operations

on it, and then replace z with L after the transformation.

To illustrate this idea, let’s consider the AR(1) process and its MA(∞) representation

that we derived earlier, given |ϕ1| < 1:

AR (1) : (1− ϕ1L)Yt = c+ ϵt,

MA(∞) : Yt =
(
1 + ϕ1L+ ϕ2

1L
2 + ϕ3

1L
3 + · · ·

)
(c+ ϵt) ,

where Lkc = c implies an intercept of
(
1 + ϕ1 + ϕ2

1 + · · ·
)
c. Hence, the conversion between

AR(1) and MA(∞) is as if we took the reciprocal of the AR(1) lag polynomial, where the

lag operator is replaced with a variable z, where |z| ≤ 1:

ϕ (z)−1 = (1− ϕ1z)
−1 = 1 + ϕ1z + ϕ2

1z
2 + ϕ3

1z
3 + · · ·

This result holds if |ϕ1z| < 1, by the geometric series formula, which is the case under

stationarity |ϕ1| < 1, given |z| ≤ 1. Hence, we can derive the MA representation of the

AR(1) process much more quickly by using the geometric series formula on the AR lag

polynomial, rather than by iteratively replacing past variables.

Similarly, let’s consider the MA(1) process and its AR(∞) representation that we de-

rived earlier, given |θ1| < 1:

MA (1) : Yt = µ+ (1 + θ1L) ϵt,

AR (∞) :
(
1− θ1L

1 + θ21L
2 − · · ·

)
Yt =

(
1− θ1L

1 + θ21L
2 − · · ·

)
µ+ ϵt,

where Lkµ = µ implies an intercept of
(
1− θ1 + θ21 − · · ·

)
µ. Hence, the conversion between

MA(1) and AR(∞) is as if we took the reciprocal of the MA(1) lag polynomial, where the

lag operator is replaced with a variable z, where |z| ≤ 1:

θ (z)−1 = (1 + θ1z)
−1 = 1 + (−θ1) z + (−θ1)2 z2 + (−θ1)3 z3 + · · ·
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This result holds if |(−θ1) z| < 1, by the geometric series formula, which is the case under

invertibility |θ1| < 1, given |z| ≤ 1. Hence, we can derive the AR representation of the

MA(1) process much more quickly by using the geometric series formula on the MA lag

polynomial, rather than by iteratively replacing past variables.

In general, to rewrite an ARMA(p, q) process, we can first factorize the lag polynomials

with a normalized constant of one and replace the lag operator with a variable |z| ≤ 1.

Then, we can use the geometric series formula to invert the factors:

ϕ (L)Yt = c+ θ (L) ϵt

(1− ϕ1L− · · · − ϕpL
p)Yt = c+ (1 + θ1L+ · · ·+ θqL

q) ϵt(
1− r−1

1 L
) (

1− r−1
2 L

)
· · ·
(
1− r−1

p L
)
Yt = c+

(
1− s−1

1 L
) (

1− s−1
2 L

)
· · ·
(
1− s−1

q L
)
ϵt

where {r1, . . . , rp} and {s1, . . . , sq} are the roots of the AR polynomial ϕ (z) and MA

polynomial θ (z), respectively.

Note that an ARMA(p, q) process can be rewritten entirely as an MA(∞) process if the

inverted roots of the AR lag polynomial lie inside the unit circle. This allows us to apply

the geometric series formula to all AR factors, i.e.
(
1− r−1

i z
)−1

= 1 + r−1
i z + r−2

i z2 + . . .,

resulting in positive powers and dependence only on past shocks. The resulting MA coeffi-

cients decay exponentially, and the ARMA(p, q) process is stationary. Thus, we can test for

stationarity by checking whether the inverted roots of the AR polynomial ϕ (z) lie inside

the unit circle.

As a side note, it is worth mentioning that the property where all the inverted roots of

the AR polynomial lie inside the unit circle is referred to as stability. A stable process is

guaranteed to be stationary, but the converse is not necessarily true. A stationary process

does not necessarily imply stability.

Similarly, an ARMA(p, q) process can be written entirely as an AR(∞) process if the

inverted roots of the MA lag polynomial lie inside the unit circle. This allows us to apply

the geometric series formula to all MA factors, i.e.
(
1− s−1

j z
)−1

= 1 + s−1
j z + s−2

j z2 + . . .,

resulting in positive powers and dependence only on past variables. The resulting AR
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coefficients decay exponentially, and the ARMA(p, q) process is invertible. Thus, we can

test for invertibility by checking whether the inverted roots of the MA polynomial θ (z) lie

inside the unit circle.

Hence, under stationarity and invertibility, the ARMA(p, q) process has the following

MA(∞) and an AR(∞) representation:

ARMA(p, q) : ϕ (L)Yt = c+ θ (L) ϵt,

MA(∞) : Yt = ϕ (1)−1 c+ θ (L) ϵt, θ (z) = ϕ (z)−1 θ (z) ,

AR (∞) : ϕ (L)Yt = θ (1)−1 c+ ϵt, ϕ (z) = θ (L)−1 ϕ (z) , |z| ≤ 1

Section 2 shows how to compute the reciprocal of a polynomial such as ϕ (z)−1 and θ (z)−1.

Example: Compute the MA(∞) representation of the following AR(2) process:

Yt = 3 + 0.3Yt−1 + 0.4Yt−2 + ϵt

Solution: Compute the factored form:

ϕ (L)Yt = c+ θ (L) ϵt

⇓(
1− 0.3L− 0.4L2

)
Yt = 3 + ϵt

(1− 0.8L) (1 + 0.5L)Yt = 3 + ϵt

where r−1
1 = 0.8 and r−2

2 = −0.5 are the inverted roots of the AR lag polynomial, which are

both inside the unit circle; hence, the process is stationary and has an MA(∞) representa-

tion. To compute the MA(∞) process, apply the geometric series formula to the inverted
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factors after replacing L with a variable z, where |z| ≤ 1:

Yt = ϕ (1)−1 c+ θ (L) ϵt, θ (z) = ϕ (z)−1 θ (z) , |z| ≤ 1

⇓

Yt = 10 + θ (L) ϵt, θ (z) = (1− 0.8z)−1 (1 + 0.5z)−1 , |z| ≤ 1

=
(
1 + 0.8z + 0.82z2 + · · ·

) (
1− 0.5z + 0.52z2 − · · ·

)
Here, the intercept is calculated as follows: (1− 0.8)−1 (1 + 0.5)−1 3 = 10. To compute the

lag polynomial θ (z), we can use the Cauchy product formula as described in Section 2:

Yt = 10 + c1ϵt−1 + c2ϵt−2 + c3ϵt−3 + · · ·+ ϵt, cs =
s∑

j=0

0.8j (−0.5)s−j

and therefore we get the following (truncated) MA representation of the AR(2) process:

Yt = 10 + 0.3ϵt−1 + 0.49ϵt−2 + 0.267ϵt−3 + 0.2761ϵt−3 + 0.18963ϵt−4 + 0.167329ϵt−5

+ 0.1260507ϵt−6 + 0.1047468ϵt−7 + 0.08184432ϵt−8 + 0.0664520209ϵt−9 + · · ·+ ϵt

The formula for the MA coefficients cs above reveals an exponential decay as s increases,

indicating that the weights assigned to past shocks become extremely small in the MA(∞)

process. Consequently, the process maintains a finite variance, and the mean, variances, and

covariances remain constant due to the identically distributed shocks. Hence, the AR(2)

process is stationary. However, if either of the inverted roots r−1
1 = 0.8 or r−2

2 = −0.5

were larger than one in magnitude, the coefficients cs would not decay exponentially as s

increases, resulting in an unstable process.

4 Univariate Non-Stationary Time Series
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4.1 Deterministic and Stochastic Trends

A stationary process is characterized by a constant distribution, which implies constant

mean and variance. However, many economic processes exhibit a mean that increases or

decreases over time, such as GDP or hours worked, as well as variances that change over

time. Despite these changes, the distribution of these processes typically does not fluctuate

randomly but instead changes smoothly over time. This gradual change in the distribution

is referred to as a trend.

The concepts of stationarity and trends are important because they impact our ability

to analyze and make predictions using time series data. Under stationarity, the stochastic

process {Yt} consists of random variables {Y0, Y1, . . . } that all have the same distribution.

A time series {yt} is an outcome of the stochastic process {Yt}, which consists of only one

observation per random variable {y0, y1, . . . , yT}. For example, we observe only one data

point for U.S. GDP in 2021, i.e., y2021 = 23.32 trillion USD. If the distribution of every

random variable in the stochastic process is different at random, then time series data

cannot be used to estimate the distribution of the stochastic process or make predictions

about the future. This is why stationarity is a useful assumption, as it allows us to combine

observations across time to learn more about the constant distribution of the stochastic

process.

However, even without stationarity, there is still hope. If the process is non-stationary

but exhibits a smooth change in distribution, such as having a trend, it is still possible to

make inferences about the distribution of the stochastic process and make predictions. In

this case, the trend can be estimated, whereas if the change in distribution were random,

estimating how the distribution changes would be impossible.

We distinguish between deterministic and stochastic trends. A deterministic trend

occurs when the change in the distribution depends entirely on the time period t. A

deterministic trend in the mean of the distribution can thus be denoted with a function of

t, δ (t):

ϕ (L)Yt = δ (t) + θ (L) ϵt
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where ϕ (L) and θ (L) are the AR and MA lag polynomials respectively. So far, we assumed

that there is no time trend, i.e., δ (t) = c doesn’t depend on t. Some common deterministic

trend specifications are:

Linear Trend : δ (t) = δ0 + δ1t

Quadratic Trend : δ (t) = δ0 + δ1t+ δ2t
2

Polynomial Trend of Degree n : δ (t) = δ0 + δ1t+ δ2t
2 + · · ·+ δnt

n

Exponential Trend : δ (t) = δ0e
δ1t

Logistic Trend : δ (t) =
δ2

1 + δ0eδ1t

A process with a deterministic trend is called trend-stationary, because the detrended

time series Y t = Yt − δ (t) is stationary.

A stochastic trend occurs when the distribution of a time series changes over time,

not due to an exogenous trend δ (t), but rather because the random events of the past

remain relevant forever so that the process never reverts back to its original distribution.

For example, the following random walk process has a stochastic trend, because unlike a

stationary AR process, the weight on past shock doesn’t go to zero:

Yt = Yt−1 + ϵt = Yt−2 + ϵt−1 + ϵt = · · · = Y0 +
t∑

s=1

ϵs

Hence, the variance of the process increases over time, because more and more shocks

contribute to the outcome of the process. Such process is called difference-stationary,

because the difference ∆Yt = ϵt is stationary.

More generally, a process that contains a stochastic trend is called a unit root pro-

cess, indicating that at least one of the roots of the autoregressive (AR) lag polynomial is

equal to one. In such cases, changes in past outcomes, denoted as ∆Yt−l = Yt−l − Yt−(l+1)

= (1− L)Yt−l, remain relevant for today’s outcome Yt, even when considering changes that

occurred in the infinite past as l approaches infinity. Consequently, past random events

retain their relevance and do not lose importance, unlike when all inverted roots are strictly
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smaller than one in magnitude.

To understand why a unit root in the AR lag polynomial implies this behavior, consider

the following ARMA process with a unit root (rp = 1):

ARMA : ϕ (L)Yt = c+ θ (L) ϵt

Normal Form : (1− ϕ1L− · · · − ϕpL
p)Yt = c+ θ (L) ϵt

Factored Form :
(
1− r−1

1 L
)
· · ·
(
1− r−1

p−1L
)
(1− L)Yt = c+ θ (L) ϵt

Removal of Unit Root :
(
1− r−1

1 L
)
· · ·
(
1− r−1

p−1L
)
∆Yt = c+ θ (L) ϵt

ARMA for 1st Difference : ϕ∗ (L)∆Yt = c+ θ (L) ϵt

Hence, the first difference in the process follows an ARMA process and directly depends

on the shocks. Since the level Yt is simply the initial value plus the sum of the differences,

it assigns equal weights to all past changes, resulting in the persistence of past shocks and

the existence of a stochastic trend:

Yt = Yt−1 +∆Yt = Yt−2 +∆Yt−1 +∆Yt = · · · = Y0 +
t∑

s=1

∆Ys

Formally, a unit root process is denoted as I (d), where d refers to the number of

roots in the AR lag polynomial that are equal to one. Hence, if d = 0, there is no unit

root and thus no stochastic trend, and if d > 0, the process has a stochastic trend. The

notation I (d) indicates that the process is integrated of order d. This means that if

the time series is differenced d times, the resulting process no longer exhibits a unit root.

Similarly, by taking the integral of a stationary process d times, we obtain an I (d) process.

To illustrate this, consider differencing a stationary process d times. Each differencing

operation removes one unit root factor, resulting in a process that no longer exhibits a unit

root. This is demonstrated in the above ARMA model, where rp = 1 is removed by taking

the first difference:
(
1− r−1

p L
)
Yt = ∆Yt. Similarly, if rp = rp−1 = 1, the unit roots are

removed by taking the second difference:
(
1− r−1

p−1L
) (

1− r−1
p L

)
Yt = ∆2Yt, where ∆2Yt

= ∆Yt −∆Yt−1. Thus, differencing eliminates unit roots, while integration introduces unit
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roots.

To summarize, a deterministic trend occurs when the change in the distribution is ex-

ogenous and depends solely on time t, while a stochastic trend arises from the accumulation

of random shocks or innovations over time. It is important to note that predictions differ

significantly depending on whether the trend is deterministic or stochastic. Predicting a

deterministic trend requires data on past outcomes solely to estimate the function δ (t). In

contrast, predicting a stochastic trend relies on the past outcomes of the time series, as the

stochastic trend accumulates information over time.

4.2 Autoregressive Integrated Moving Average (ARIMA) Model

Section 3.1 introduces the ARMA model for stationary processes, and in Section 4.1, we

learned that differencing eliminates unit roots and thus transforms a non-stationary process

with a stochastic trend into a stationary one. When we apply the ARMA model to a

differenced process, it is referred to as an autoregressive integrated moving average

model, denoted as ARIMA(p, d, q):

ϕ (L)∆dYt = δk (t) + θ (L) ϵt, ϕ (L) = 1− ϕ1L− ϕ2L
2 − · · · − ϕpL

p

θ (L) = 1 + θ1L+ θ2L
2 + · · ·+ θqL

q

Here, d represents the number of unit roots in the AR polynomial, indicating the number

of times the process needs to be differenced to achieve trend-stationarity, p represents the

number of AR lags after differencing d times, and q represents the number of MA lags in

the process. The deterministic trend is captured with δk (t) = δ0 + δ1t+ · · ·+ δkt
k, which

for simplicity is assumed to be a polynomial of degree k, but it can take any form.

After estimating the ARMA parameters, we discuss two ways to obtain the level series

{Yt} from the differenced process
{
∆dYt

}
. We discuss two ways. First, we can compute the

non-stationary ARMA process for Yt using ∆dYt = (1− L)d Yt to rewrite the right-hand
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side of the ARIMA model as follows:

ϕ (L)∆dYt =
(
1− r−1

1 L
)
· · ·
(
1− r−1

p L
)
(1− L) · · · (1− L)Yt

=
(
1− r−1

1 L
)
· · ·
(
1− r−1

p L
) (

1− r−1
p+1L

)
· · ·
Ä
1− r−1

p+dL
ä
Yt, rj = 1, ∀j > p

= ϕ∗ (L)Yt

where ϕ∗ (L) is the AR lag polynomial of the non-stationary ARMA model for Yt, and the

MA lag polynomial θ (L) and the deterministic trend δk (t) remain the same. Note that

the AR lag polynomial consists of p+ d lags; hence, the ARMA model has d additional

AR lags compared to the ARIMA model. To summarize, to make forecasts about the level

process {Yt}, we rewrite the ARIMA model as a non-stationary ARMA model and then

compute forecasts as in the ARMA model.

The second way to obtain the level series {Yt} from the differenced process
{
∆dYt

}
is

to integrate the differenced series d times. For example, given ∆Yt for all t, and the initial

value Y0, we can compute Yt by summing (or integrating) over all the differenced variables:

∆1Yt = Y0 +
t∑

s=1

∆1Ys

and in general, the following holds:

∆j−1Yt = ∆j−1Yj−1 +
t∑

s=j

∆jYs j = 1, 2, . . .

Hence, Yt is derived by first computing ∆d−1Yt from ∆dYt, and then computing ∆d−2Yt

from ∆d−1Yt, and so on, until we arrive at ∆0Yt = Yt.

Let’s apply the above procedure to relate Yt to ∆4Yt, and simplify the terms using
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Faulhaber’s formula from Section 2.4:

Yt = Y0 +
t∑

s1=1

∆Ys1

= Y0 +∆Y1t+
t∑

s1=2

s1∑
s2=2

∆2Ys2

= Y0 +

Å
∆Y1 −

1

2
∆2Y2

ã
t+

Å
1

2
∆2Y2

ã
t2 +

t∑
s1=3

s1∑
s2=3

s2∑
s3=3

∆3Ys3

= Y0 +

Å
∆Y1 −

1

2
∆2Y2 +

11

6
∆3Y3

ã
t+

Å
1

2
∆2Y2 −

1

2
∆3Y3

ã
t2 +

Å
1

6
∆3Y3

ã
t3

+
t∑

s1=4

s1∑
s2=4

s2∑
s3=4

s3∑
s4=4

∆4Ys4

The above calculations suggest that we can relate Yt to ∆dYt for any d as follows:

Yt = α0 + α1t+ α2t
2 + · · ·+ αd−1t

d−1︸ ︷︷ ︸
λd−1(t)

+
t∑

s1=d

s1∑
s2=d

s2∑
s3=d

· · ·
sd−1∑
sd=d

∆dYsd

where λd−1 (t) is a polynomial in t of degree d− 1, and its coefficients depend on the initial

values of the process: {Y0, Y1, . . . , Yd−1}. To summarize, to make forecasts about the level

process {Yt} with this approach, first make forecasts of the differenced series
{
∆dYt

}
using

the ARIMA model, and then use the above expression to compute the level series from the

differenced series.

The advantage of the second approach is that it allows us to directly relate the level

variables to the underlying shocks. This is not possible with the first approach, as the

ARMA model for {Yt} has unit roots in the AR lag polynomial and therefore does not

have an MA(∞) representation. Unlike the non-stationary ARMA model for {Yt}, the

ARIMA model for
{
∆dYt

}
has an MA(∞) representation as long as the inverted roots of
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the AR lag polynomial ϕ (L) are all smaller than one in magnitude:

ϕ (L)∆dYt = δk (t) + θ (L) ϵt,

∆dYt = γk (t) + θ (L) ϵt, γk (t) = ϕ (1)−1 δk (t)

θ (z) = ϕ (z)−1 θ (z) , ∀ |z| ≤ 1

where θ (L) = 1 + θ1L+ θ2L
2 + · · · is an infinite series (see Section 3.4 for how to compute

it), and γk (t) = γ0 + γ1t+ · · ·+ γkt
k represents the deterministic trend of the MA(∞)

process.

To relate Yt to the underlying shocks, we replace ∆dYt with the above MA(∞) repre-

sentation:

Yt = λd−1 (t) +
t∑

s1=d

s1∑
s2=d

s2∑
s3=d

· · ·
sd−1∑
sd=d

(
γk (sd) + θ (L) ϵsd

)
To find an expression for the dth integral of the deterministic trend γk (t), which is a

polynomial in t of degree k, we can use Faulhaber’s formula from Section 2.4. The formula

states that the sum of the kth powers of the first s positive integers is a polynomial in s of

order k + 1, and therefore,

t∑
s1=d

s1∑
s2=d

· · ·
sd−1∑
sd=d

γk (sd) =
t∑

s1=d

s1∑
s2=d

· · ·
sd−2∑

sd−1=d

sd−1∑
sd=d

(
γ0 + γ1sd + γ2s

2
d + · · ·+ γks

k
d

)
=

t∑
s1=d

s1∑
s2=d

· · ·
sd−2∑

sd−1=d

(
η0 + η1sd−1 + η2s

2
d−1 + · · ·+ ηk+1s

k+1
d−1

)
...

=
t∑

s1=d

(
ψ0 + ψ1s1 + ψ2s

2
1 + · · ·+ ψk+d−1s

k+d−1
1

)
= ω0 + ω1t+ ω2t

2 + · · ·+ ωk+dt
k+d = ωk+d (t)

This reveals that integrating d times increases the degree of the polynomial of the deter-

ministic trend by d. Hence, an intercept in the ARIMA(p, d, q) model, i.e., δ0 (t) = δ0,

implies that Yt has a deterministic trend of the form of a polynomial of degree d.
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This is important because it demonstrates that the ARIMA model produces not only

a stochastic trend but also a deterministic trend in {Yt}. If we observe a quadratic trend

alongside a unit root I (1) in the level series {Yt}, it is essential to note that the trend

in the ARIMA model should not be quadratic; instead, it should be linear. Introducing

a quadratic trend in the ARIMA model would result in a cubic trend in {Yt}. Therefore,

it is necessary to either differentiate the series prior to determining the trend or account

for the change in trend when transitioning from the differenced series to the level series.

This ensures that the trend specification in the ARIMA model aligns accurately with the

underlying behavior of the time series.

Using the above expression for the trend, we can relate the level variable to the deter-

ministic trend and random shocks as follows:

Yt = λd−1 (t) + ωk+d (t) +
t∑

s1=d

s1∑
s2=d

s2∑
s3=d

· · ·
sd−1∑
sd=d

θ (L) ϵsd

For example, for an ARIMA(p, 1, q), we have:

Yt = λ0 (t) + ωk+1 (t) +
t∑

s=1

θ (L) ϵs

= λ0 + ω0 + ω1t+ ω2t
2 + · · ·+ ωk+1t

k+1 +
t∑

s=1

∞∑
l=1

θlϵs−l +
t∑

s=1

ϵs

where the intercept and the functions of t represent the deterministic trend, and the shocks

represent both the stochastic trend and transitory effects.

Unlike in stationary ARMA models, where shocks only have a temporary effect on

Yt, the effect of a change in today’s shock will persist until the infinite future in the

ARIMA(p, 1, q) model:

Effect of ϵt on ∆Yt+∞ : lim
h→∞

∂∆Yt+h

∂ϵt
= lim

h→∞
θh = 0

Effect of ϵt on Yt+∞ : lim
h→∞

∂Yt+h

∂ϵt
= 1 +

∞∑
l=1

θl = θ (1)
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where θ (1) is the permanent or long-run effect. Therefore, θ (1)
∑t

s=1 ϵs represents the

stochastic trend of {Yt}, as it captures the permanent change in Yt caused by past random

shocks.

The Beveridge-Nelson decomposition (1981) separates this trend component from

the temporary effects of the shocks. In particular, the Beveridge-Nelson decomposition of

the ARIMA(p, 1, q) process is as follows:

Yt = λ0 (t) + ωk+1 (t) + θ (1)
t∑

s=1

ϵs︸ ︷︷ ︸
gt

+ θ̃ (L) ϵt︸ ︷︷ ︸
ct

, θ̃ (L) =
[
θ (L)− θ (1)

]
(1− L)−1

where gt is the trend component, and ct captures the transitory effects of the shocks. More

specifically, λ0 (t) captures the permanent effects of the initial values, ωk+1 (t) represents

the deterministic trend, θ (1)
∑t

s=1 ϵs represents the stochastic trend, and θ̃ (L) ϵt captures

the temporary effects of the shocks.

To prove that the above Beveridge-Nelson decomposition indeed represents {Yt}, we

replace θ̃ (L) with
[
θ (L)− θ (1)

]
(1− L)−1 and observe that we obtain the same expression

for {Yt} as before. Note that (1− L)−1 is the integral operator, i.e., (1− L)−1 ϵt =
∑t

s=1 ϵs.

This is because (1− L)−1 is the inverse of the difference operator ∆ = (1− L), so we

can verify this by multiplying both sides with the difference operator: ϵt =
∑t

s=1 ∆ϵs

= ϵt − ϵ0 = ϵt, where ϵ0 = 0 is assumed.

By expanding the lag polynomial, we can find an expression for θ̃ (L) as follows:

θ̃ (L) =
[
θ (L)− θ (1)

]
(1− L)−1

=
[(
1− θ (1)

)
+ θ1L+ θ2L

2 + · · ·
] (

1 + L+ L2 + · · ·
)

= 1− θ (1) +
(
θ1 + 1− θ (1)

)
L+

(
θ2 + θ1 + 1− θ (1)

)
L2 + · · ·

= −
∞∑
i=1

θi −
∞∑
j=2

θjL−
∞∑
k=3

θkL
2 − · · ·

= θ̃0 + θ̃1L+ θ̃2L
2 + · · · , θ̃j = −

∞∑
i=j+1

θi
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Here, we derive (1− L)−1 = 1 + L+ L2 + . . . by replacing the lag operator L with |z| < 1

and using the geometric series formula. After obtaining the series 1 + z + z2 + . . . in terms

of z, we substitute z back with L to obtain 1 + L+ L2 + . . ..

To derive the Beveridge-Nelson decomposition of the ARIMA(p, 1, q) process without

relying on polynomial math, let’s reconsider the following facts:

A. ϵs−l = ϵs − (ϵs − ϵs−1)− (ϵs−1 − ϵs−2)− · · · −
(
ϵs−(l−1) − ϵs−l

)
=ϵs −

l−1∑
j=0

∆ϵs−j

B.

t∑
s=1

∆ϵs−j = (ϵt−j − ϵt−1−j) +
(
ϵt−1−j − ϵt−1−(j+1)

)
+ · · ·+ (ϵ1−j − ϵ−j) = ϵt−j − ϵ−j︸︷︷︸

=0

Using these facts, we can now rewrite the shocks of the process for {Yt} as follows:

t∑
s=1

θ (L) ϵs =
t∑

s=1

∞∑
l=1

θlϵs−l +
t∑

s=1

ϵs

[A] =
t∑

s=1

∞∑
l=1

θl

(
ϵs −

l−1∑
j=0

∆ϵs−j

)
+

t∑
s=1

ϵs

=

(
1 +

∞∑
l=1

θl

)
t∑

s=1

ϵs −
t∑

s=1

∞∑
l=1

θl

l−1∑
j=0

∆ϵs−j

= θ (1)
t∑

s=1

ϵs −
∞∑
j=0

(
∞∑

l=j+1

θl

)
t∑

s=1

∆ϵs−j

[B] = θ (1)
t∑

s=1

ϵs −
∞∑
j=0

(
∞∑

l=j+1

θl

)
ϵt−j

= θ (1)
t∑

s=1

ϵs + θ̃ (L) ϵt

In the last step, we introduce θ̃ (L) = θ̃0 + θ̃1L+ θ̃2L
2 + . . ., where θ̃j = −

∑∞
i=j+1 θi. This

yields the desired Beveridge-Nelson decomposition of the ARIMA(p, 1, q) process.

Finally, we can recursively derive the Beveridge-Nelson decomposition of any ARIMA(p, d, q)
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process as follows:

∆dYt = γk (t) + θ (L) ϵt

= γk (t) + θ̃d (L) ϵt

∆d−1Yt = ∆d−1Yd−1 + (1− L)
−1

∆dYt

= λ0 (t) + ωk+1 (t) + (1− L)
−1

θ̃d (L) ϵsd

= λ0 (t) + ωk+1 (t) + θ̃d (1) (1− L)
−1

ϵt + θ̃d−1 (L) ϵt

∆d−2Yt = ∆d−2Yd−2 + (1− L)
−1

∆d−1Yt

= λ1 (t) + ωk+2 (t) + (1− L)
−1

θ̃d (1) (1− L)
−1

ϵt + (1− L)
−1

θ̃d−1 (L) ϵt

= λ1 (t) + ωk+2 (t) +
[
θ̃d (1) (1− L)

−1
+ θ̃d−1 (1)

]
(1− L)

−1
ϵt + θ̃d−2 (L) ϵt

∆d−3Yt = ∆d−3Yd−3 + (1− L)
−1

∆d−2Yt

= λ2 (t) + ωk+3 (t) + (1− L)
−1
[
θ̃d (1) (1− L)

−1
+ θ̃d−1 (1)

]
(1− L)

−1
ϵt + (1− L)

−1
θ̃d−2 (L) ϵt

= λ2 (t) + ωk+3 (t) +
[
θ̃d (1) (1− L)

−2
+ θ̃d−1 (1) (1− L)

−1
+ θ̃d−2 (1)

]
(1− L)

−1
ϵt + θ̃d−3 (L) ϵt

...

Yt = λd−1 (t) + ωk+d (t) +

d∑
j=1

θ̃j (1) (1− L)
−j

ϵt︸ ︷︷ ︸
gt

+ θ̃0 (L) ϵt︸ ︷︷ ︸
ct

Here, gt represents the trend component, and ct captures the transitory effects of the

shocks. Specifically, λd−1 (t) captures the permanent effects of the initial values, ωk+d (t)

represents the deterministic trend,
∑d

j=1 θ̃
j (1) (1− L)−j ϵt represents the stochastic trend,

and θ̃0 (L) ϵt captures the temporary effects of the shocks. The integral operator (1− L)−j

and the lag polynomial θ̃j (L) are defined as follows:

(1− L)−j ϵt =
t∑

s1=d

s1∑
s2=d

· · ·
sj−2∑

sj−1=d

sj−1∑
sj=d

ϵsj

θ̃j (L) = θ̃j+1 (L) (1− L)−1 −
d−j∑
k=1

θ̃j+k (1) (1− L)−k j = 0, . . . , d− 1

and we have θ̃d (L) = θ (L).
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4.3 Dickey-Fuller Test

When analyzing time series data, it is important to determine the presence and nature of

any underlying trend. However, it can be challenging to determine whether a time series is

stationary, trend-stationary, or difference-stationary based solely on visual inspection. In

such cases, the Dickey-Fuller test (1979) provides a statistical method to assess whether a

time series exhibits a stochastic trend. This test helps in making informed decisions about

the nature of the trend in the data.

The Dickey-Fuller test uses the insight that if a time series possesses a unit root, the

differenced process ∆Yt should not depend on lagged level variables Yt−l, but solely on

lagged differenced variables ∆Yt−l. This is because when a unit root rp = 1 exists, substi-

tuting
(
1− r−1

p L
)
Yt with ∆Yt eliminates the level variables entirely. Consequently, if Yt−1

is included in the regression, the coefficient on this variable should be zero if the process

possesses a unit root.

To conduct the Dickey-Fuller test, we start with a potentially non-stationary ARMA(p, q)

process:

ϕ (L)Yt = δk (t) + θ (L) ϵt

Yt = δk (t) + ϕ1Yt−1 + · · ·+ ϕpYt−p + θ (L) ϵt

where ϕ (L) represents the AR lag polynomial, θ (L) represents the MA lag polynomial,

and δk (t) = δ0 + δ1t+ · · ·+ δkt
k is a deterministic trend that, for simplicity, is assumed

to be a polynomial in t of degree k. Note that if there is a unit root, by definition, one

of the roots of the AR lag polynomial ϕ (L) is equal to one, i.e., ϕ (1) = 0. This occurs

when the AR coefficients add up to one, i.e., if 1− ϕ (1) =
∑p

l=1 ϕl = 1. In practice, the

estimated coefficients will never exactly sum up to one. Therefore, a statistical test, such

as the Dickey-Fuller test, is necessary to evaluate the hypothesis of a unit root.

Next, we relate the differenced variables to the lagged level variable Yt−1 by replacing the

variables in the potentially non-stationary ARMA(p, q) process with the following functions
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of Yt−1:

Yt = Yt−1 +∆Yt

Yt−l = Yt−1 −∆Yt−1 − · · · −∆Yt−(l−1) l = 1, . . . , p

which results in the following relationship between ∆Yt and Yt−1:

∆Yt = δk (t) + βYt−1 + γ1∆Yt−1 + · · ·+ γp−1∆Yt−(p−1) + θ (L) ϵt, β = ϕ1 + · · ·+ ϕp − 1

γl = ϕl + · · ·+ ϕp

where β represents the effect of Yt−1 on ∆Yt. If there is a unit root, i.e.,
∑p

l=1 ϕl = 1, then

β = 0, indicating that ∆Yt does not depend on the level variable Yt.

The above relationship suggests that we can reject the null hypothesis that there is a

unit root if β ̸= 0. However, that is not the case. As discussed in Section 4.2, a unit root

not only produces a stochastic trend but also leads to a more sophisticated deterministic

trend. If the time series is integrated of order d and follows a non-stationary ARMA model

that contains a deterministic trend δk(t) modeled as a polynomial in t of degree k, the

actual deterministic trend turns out to be a polynomial in t of degree k + d.

For instance, consider the case where the non-stationary ARMA model includes an

intercept term. In this case, a unit root implies that the time series not only has a stochastic

trend but also a linear deterministic trend. Therefore, when β = 0, it could either be a result

of a stochastic trend (unit root) or a deterministic trend. In order to test for a stochastic

trend only, the null hypothesis needs to be H0 : β = δk = 0. This formulation ensures that

both the model under the null hypothesis and the alternative hypothesis H1 : ¬H0 have a

deterministic trend that is a polynomial in t of degree k.

The Dickey-Fuller test can be applied to various specifications of deterministic trends.

However, most software implementations typically consider three common cases:

1. δk(t) = 0 with null hypothesis H0 : β = 0,

2. δ0(t) = δ0 with null hypothesis H0 : β = δ0 = 0, and

3. δ1(t) = δ0 + δ1t with null hypothesis H0 : β = δ1 = 0.
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These three cases allow for testing the presence of a unit root in the time series, assuming

that the model has either no intercept, an intercept, or a linear trend.

For example, consider an AR(1) specification so that the test simplifies to the following

regression:

Yt = δ0 + δ1t+ ϕ1Yt−1 + ϵt

⇓

∆Yt = δ0 + δ1t+ βYt−1 + ϵt, β = ϕ1 − 1

Case 1 considers the case where δ0 = δ1 = 0, and compares the following two models:

H1 : β ̸= 0 ⇒ Yt = ϕ1Yt−1 + ϵt =
∞∑
j=1

ϕjϵt−j + ϵt

H0 : β = 0 ⇒ Yt = Y0 +
t∑

j=1

∆Yj = Y0 +
t∑

j=1

(βYj−1 + ϵj) = Y0 +
t∑

j=1

ϵj

Case 2 considers the case where δ1 = 0, and compares the following two models:

H1 : ¬H0 ⇒ Yt =
δ0

1− ϕ
+

∞∑
j=1

ϕjϵt−j + ϵt

H0 : β = δ0 = 0 ⇒ Yt = Y0 +
t∑

j=1

(δ0 + βYj−1 + ϵj) = Y0 +
t∑

j=1

ϵj

Case 3 compares the following two models:

H1 : ¬H0 ⇒ Yt =
δ0(1− ϕ)− δ1

(1− ϕ)2
+

δ1
1− ϕ

t+
∞∑
j=1

ϕjϵt−j

H0 : β = δ1 = 0 ⇒ Yt = Y0 +
t∑

j=1

(δ0 + δ1j + βYj−1 + ϵj) = Y0 + δ0t+
t∑

j=1

ϵj

Hence, the choice of the appropriate case depends on the characteristics of the specific time

series being analyzed. Case 1 should only be used if the time series has a mean of zero,

which is typically not the case in economic data. Case 2 is applicable when the time series

does not exhibit an upward or downward trend, and Case 3 allows for a linear trend in the
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time series.

Under Case 1, the regression coefficient can be identified as follows:

β =
Cov(∆Yt, Yt−1)

Var(Yt−1)
=

Cov(βYt−1 + ϵt, Yt−1)

Var(Yt−1)
=
βVar(Yt−1)

Var(Yt−1)
= β

Here, the bar on top of the variance (and covariance) indicates that it represents the sample

variances (and covariances) across time. It is important to note that Var(Yt−1) does not

compute the variance of the random variable Yt−1, which may change over time if there is

a unit root.

In the presence of a unit root, the variance of Yt−1 across time, denoted as Var(Yt−1),

differs from the time-varying variance Vart−1(Yt−1). As a result, the t-statistic of β̂ does not

follow a standard Student-t distribution. Instead, it follows a nonstandard density function

known as the Dickey-Fuller distribution, which does not have a tractable mathematical

expression. Therefore, critical values for the t-statistic under the Dickey-Fuller distribution

are typically obtained from tables or computed using simulation techniques. Researchers

often refer to these tables to determine the critical values for specific significance levels,

such as α = 0.05, to test the null against the alternative hypothesis.

While the above test for an AR(1) model is known as the Dickey-Fuller test, the aug-

mented Dickey-Fuller test allows for the inclusion of additional AR and MA lags.

Incorporating additional AR lags can be achieved by including lagged differences ∆Yt−l in

the regression equation. However, estimating MA coefficients can be more challenging in

practice. To address this issue, a common approach is to eliminate the MA lag polynomial

and introduce additional AR lags instead. This practice is justified by our earlier discussion

in Section 3.4, where we demonstrated that an invertible ARMA process can be represented

as an infinite-order AR process, with AR coefficients that exhibit exponential decay. Due

to the exponential decay of the AR coefficients, truncating the AR lag polynomial at a

large enough but finite number is unlikely to significantly affect the results. Consequently,

replacing the MA coefficients with additional AR coefficients is expected to have a small
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impact on the overall outcome. In practice, the determination of the number of AR lags is

typically determined using an information criterion.

5 Linear Algebra

Before delving into multivariate time series models, it is essential to introduce linear algebra

tools that complement the polynomial math tools we have used thus far.

5.1 Leveraging Linear Algebra for Computing the Reciprocal of

a Polynomial

Let’s reconsider a polynomial of degree p:

f(z) = a0 + a1z + a2z
2 + · · ·+ apz

p

Previously, we computed the reciprocal f(z)−1 by factoring it with a normalized constant

= 1:

f(z) = a0
(
1− r−1

1 z
)
· · ·
(
1− r−1

n z
)
= a0

n∏
k=1

(
1− r−1

k z
)

We then applied the geometric series formula to each inverted factor and expanded the

infinite sums using the Cauchy integral formula. This resulted in the Laurent series repre-

sentation:

f(z)−1 = c0 + c1z + c2z
2 + · · ·+ c−1z

−1 + c−2z
−2 + · · ·

where c−i = 0 for all i ≥ 1 if the inverted roots have magnitudes smaller than one.

Now, we introduce a different method that utilizes linear algebra to derive the same

reciprocal. The reason for introducing this method is that, unlike the previous approach,

the linear algebra approach is applicable when working with matrix polynomials, which

will be used to compute various aspects of multivariate time series models.

The approach is to utilize matrix algebra to represent the polynomial as a single factor
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instead of multiple factors, one for each root. To achieve this, we can express the polynomial

using matrix notation as follows:



f(z)

0

...

0

0


= a0



1

z

...

zp−2

zp−1


− a0



−a1
a0

−a2
a0

· · · −ap−1

a0
−ap

a0

1 0 · · · 0 0

...
...

...
...

...

0 0 · · · 0 0

0 0 · · · 1 0





z

z2

...

zp−1

zp


f(z) = a0ρ(z)− a0Czρ(z)

= a0(Ip − Cz)ρ(z)

= G(z)ρ(z), G(z) = a0(Ip − Cz)

where C is the companion matrix, characterized by parameters on the first row and

an identity matrix starting on the second row and ending on the second-to-last column.

The p× p matrix G(z) represents the transformation of the p× 1 polynomial vector ρ(z)

to generate the polynomial f(z), and Ip is a p× p identity matrix. By expressing the

polynomial as a transformation G(z) of the polynomial vector ρ(z), we can represent the

polynomial f(z) of degree p, which consists of p factors
(
1− r−1

i z
)
for i = 1, . . . , p, as a

polynomial with a single factor (Ip − Cz).

The reciprocal f(z)−1, defined as f(z)−1f(z) = 1, can then be computed as the top-left

entry of the inverse matrix G(z)−1:

f(z) = G(z)ρ(z), [ρ(z)]1,1 = 1

G(z)−1f(z) = ρ(z)

f(z)−1 =
[
G(z)−1

]
1,1

where [M ]i,j is an operator that extracts the ith row and jth column of matrix M .

Under the assumption that all inverted roots of the polynomial f(z) lie inside the unit

circle and |z| ≤ 1, we can compute the inverse matrix G(z)−1 using the geometric series
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formula applied to matrices:

G(z)−1 = a−1
0 (Ip − Cz)−1

= a−1
0

(
Ip + Cz + C2z2 + C3z3 + · · ·

)
which leads to the calculation of f(z)−1 as described earlier.

However, when we extend this concept to matrix polynomials, we can no longer directly

compute the inverted roots of f(z). Instead, we need an alternative method to determine

whether the geometric series formula applies. To do this, we introduce the concept of

eigenvalues. We can then argue that if the eigenvalues of the companion matrix C are

inside the unit circle, which in this example correspond to the inverted roots, then Ck

approaches zero as k approaches infinity. Consequently, the geometric series formula can

be applied.

5.2 Eigenvalues, Eigenvectors, and Determinant

Consider a p× p square matrix M . In linear algebra, we can interpret M as a linear

transformation that acts on a p× 1 vector v, resulting in a new vector w =Mv. If the

vector v is aligned in a specific direction, the transformation Mv is equivalent to simply

scaling the vector by a scalar λ. This special vector v is known as an eigenvector of

M , and the scalar λ is referred to as the eigenvalue of M . It is defined by the following

equation:

Mv = λv

where λ ∈ C is a complex scalar and v ∈ Cp is a p× 1 vector in complex space. Therefore,

the matrix-vector product Mv yields the same result as scaling the eigenvector v by the

scalar λ, which represents the eigenvalue. From this it follows that if the matrix is applied k

times, then that corresponds to scaling the vector v by λk. The equation typically has mul-

tiple solutions, indicating that matrix M can have multiple eigenvalues and corresponding

eigenvectors.
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Moreover, if we apply the matrix M k times to the vector v, it corresponds to scaling

the eigenvector v by the eigenvalue raised to the power of k

M2v =M(Mv) = λ(λv) = λ2v ⇒ Mkv = λkv

which property holds for each eigenvalue and its associated eigenvector.

Why is this relevant? Well, the behavior of eigenvalues and eigenvectors provides impor-

tant insights into the properties of a matrix transformation. In particular, if all eigenvalues

of matrix M are inside the unit circle, then all corresponding eigenvectors will be scaled

down and approach the zero vector as the matrix is applied multiple times. In other words,

if the eigenvalues and eigenvectors are inside the unit circle, the matrix Mk tends to zero

as k approaches infinity. This property has important implications in understanding the

long-term behavior and stability of systems described by matrix transformations.

In our context, the relevance of eigenvalues and eigenvectors lies in determining whether

the geometric series formula can be applied. Specifically, if the companion matrix C satisfies

the condition that applying it k times (Ck) tends to zero as k approaches infinity, then we

can utilize the geometric series formula. Therefore, by examining the eigenvalues of C, we

can determine whether the conditions for applying the geometric series formula are met.

It turns out that the eigenvalues of the companion matrix C correspond to the in-

verted roots of the polynomial f(z), while the eigenvectors are the polynomial vectors ρ(z)

computed at those roots:

f(r) = 0 ⇒ f(r) = a0(Ip − Cr)ρ(r) = 0

Cρ(r) = r−1ρ(r)

Cv = λv

Hence, the eigenvalues of C satisfy the equation f
(
λ−1
)
= 0, and the corresponding eigen-

vectors are obtained as v = ρ
(
λ−1
)
. Consequently, if all inverted roots of f(z) lie inside

the unit circle, it follows that all eigenvalues of C are also inside the unit circle. As a result,
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Ck tends to zero as k approaches infinity.

While the computation of eigenvalues for a companion matrix is straightforward, as

shown above, the process for a general matrix is more involved. In general, one can deter-

mine the eigenvectors of a matrix M by iteratively testing different vectors until finding

one that remains within its own span when M is applied. The corresponding eigenvalues

are then calculated by measuring the scaling factor applied to these eigenvectors. How-

ever, there is a more efficient method that allows for the direct computation of eigenvalues

without initially knowing the eigenvectors. To do this, we introduce the concept of the

determinant of a matrix M , denoted as det(M). The determinant quantifies the extent

to which the transformation M stretches or compresses space. It represents the factor by

which the area (or volume, mass) of a given region in space changes when subjected to

the transformation M . A negative determinant indicates a reversal in orientation of the

region, while a determinant of zero suggests that M compresses space into a lower dimen-

sion. Hence, if det(M) = 0, it implies that the matrix M is not invertible, meaning that

M−1 does not exist. This is because a transformation can map from a higher dimension to

a lower dimension, but not vice versa.

Note that since scaling a region by 2 and then by 3 is the same as scaling a region by

2× 3 = 6, we have that the determinant is multiplicative, i.e., det(AB) = det(A) det(B).

Similarly, if the matrix M scales space by a factor of det(M), then the inverse transforma-

tion M−1 reverses the operation and thus scales space by a factor of det(M)−1. Hence, we

can conclude that det
(
M−1

)
= det(M)−1.

Given that the eigenvector v cannot be the zero vector, we can compute the eigenvalues

λ of M by setting the determinant of M − λIp to zero:

Mv = λv

(M − λIp)v = 0

det(M − λIp) = 0

41



The last equation is derived from the fact that if det(M − λIp) ̸= 0, then (M − λIp) is

invertible, and therefore, the eigenvector v must be the zero vector, v = (M − λIp)
−10 = 0,

which is not possible. Hence, we were able to find an equation that allows us to compute

the eigenvalues without requiring knowledge of the eigenvectors. This provides a convenient

and efficient method for determining the eigenvalues of a matrix.

Algebraically, the eigenvalues of a p× p matrix M are the p roots of its characteristic

polynomial κ(z), which is defined as the determinant of (M − zIp). The characteristic

polynomial is a polynomial of degree p and can be written as:

κ(z) = det(M − zIp) = α0 + α1z + · · ·+ αpz
p ⇒ κ(λ) = 0

The coefficients of the characteristic polynomial have a specific relationship with the matrix

M . In particular, α0 is equal to the determinant of M , αp is equal to (−1)p, and αp−1 is

equal to (−1)p times the trace of M , denoted by tr(M). The trace of a square matrix M

is obtained by summing the diagonal entries of M .

For the specific case of a 2× 2 matrix, the characteristic polynomial can be expressed

as:

κ (z) = det

Öa b

c d

− zI2

è
= det

a− z b

c d− z

 = (a− z) (d− z)− bc

= ad− bc︸ ︷︷ ︸
α0

− (a+ d)︸ ︷︷ ︸
α1

z + 1︸︷︷︸
α2

z2

By computing the roots of the characteristic polynomial κ (z) through the equation κ (λ) = 0,

we can find the two eigenvalues {λ1, λ2} of the 2× 2 matrix.

For the specific case of an upper (or lower) triangular matrix U , the determinant is the

product of the main diagonal entries, and therefore the eigenvalues of an upper (or lower)
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triangular matrix are precisely its diagonal entries:

κ (λ) = det (U − λIp) = det





u11 − λ u12 · · · u1p

0 u22 − λ · · · u2p
...

...
. . .

...

0 0 · · · upp − λ




= 0

(u11 − λ) (u22 − λ) · · · (upp − λ) = 0

λi = uii, i = 1, . . . , p

Given this property for an upper (or lower) triangular matrix U , and the fact that the de-

terminant of a matrix has the property of multiplicativity, one can compute the eigenvalues

of a general matrix M by first performing the Schur decomposition M = QUQ−1 (see next

section for details), where U is an upper triangular matrix and Q is a unitary matrix. Then,

the determinant of M can be expressed as det (M) = det (Q) det (U) det (Q)−1 = det (U),

where det (U) is computed as described above.

5.3 Eigendecomposition, Jordan Decomposition, and Schur de-

composition

We have observed that eigenvalues play a crucial role in determining the stability of a

matrix, indicating whether it will diverge to infinity or not as it is applied repeatedly.

Moreover, eigenvalues and eigenvectors enable us to perform an eigendecomposition of

diagonalizable matrices. This decomposition provides efficient means to compute the kth

power of a matrix and even handle fractional powers Mk when k is not an integer. In cases

where a matrix is not diagonalizable, the Jordan or Schur decomposition offer valuable

alternatives to the eigendecomposition.

Suppose the p× p matrix M is diagonalizable or non-defective, meaning that the p

eigenvectors {v1, . . . , vp} are linearly independent. Then any p× 1 vector w can be written
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as a linear combination of the p eigenvectors:

w = γ1v1 + · · ·+ γpvp =
[
v1 · · · vp

]

γ1
...

γp

 = V γ ⇒ γ = V −1w

Thus, applying transformation Mk to that vector w can be written as a linear combination

of the eigenvectors scaled by the kth power of M ’s eigenvalues {λ1, . . . , λp}:

Mkw = γ1M
kv1 + · · ·+ γpM

kvp

= γ1λ
k
1v1 + · · ·+ γpλ

k
pvp =

[
v1 · · · vp

]

λk1 · · · 0

...
. . .

...

0 · · · λkp



γ1
...

γp

 = V Λkγ

Finally, since γ = V −1w, we can compute the eigendecomposition of Mk as follows:

Mk = V ΛkV −1, V =
[
v1 · · · vp

]
, Λk =


λk1 · · · 0

...
. . .

...

0 · · · λkp


It is worth noting that k does not need to be an integer, as the kth power of the diagonal

matrix Λ can be expressed as a diagonal matrix of eigenvalues, each raised to the power of

k.

If the eigenvectors are not linearly independent, then V −1 doesn’t exist, and therefore

M does not have an eigendecomposition, that is,M is defective. In such cases, alternative

decomposition methods like the Jordan or Schur decomposition are employed to analyze

and compute the powers of the matrix. These methods provide a similar framework to

the eigendecomposition but can handle matrices that are not diagonalizable. The Jordan

decomposition involves transforming the matrix into its Jordan canonical form J ,
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which consists of blocks with eigenvalues on the diagonal and ones on the superdiagonal:

M = PJP−1

where J is an upper diagonal matrix. If M is diagonalizable, the decomposition becomes

the eigendecomposition with P = V and J = Λ. The Schur decomposition, on the other

hand, expresses the matrix as the product of a unitary matrix Q, an upper triangular

matrix U , and the (conjugate) transpose Q′:

M = QUQ′, Q′Q = Ip, Q′ = Q−1

These decompositions allow for a more generalized analysis of matrix powers and properties,

even for matrices that are defective. The advantage of the Jordan decomposition is that it

simplifies to the eigendecomposition when the matrix is non-defective, and the advantage

of the Schur decomposition is that it is faster to compute.

5.4 Reciprocal of a Matrix Polynomial

In Section 5.1, we explored the computation of the reciprocal of a polynomial using linear

algebra, assuming that all the inverted roots of the polynomial are within the unit circle.

In this section, we will expand our analysis to handle scenarios where some roots are inside

the unit circle while others are outside. Additionally, we will extend our focus from scalar

polynomials to matrix polynomials.

Let’s consider a matrix polynomial of degree p:

F (z) = A0 + A1z + A2z
2 + · · ·+ Apz

p

where Ai are n× n matrices of coefficients, and z is a scalar variable. As in Section 5.1,

we use matrix algebra to represent the polynomial as a single factor. To achieve this, we
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can express the polynomial using matrix notation as follows:



F (z)

0

...

0

 = (Ip ⊗ A0)



In

zIn
...

zp−1In

− (Ip ⊗ A0)



−A−1
0 A1 −A−1

0 A2 · · · −A−1
0 Ap

In 0 · · · 0

...
...

...
...

0 0 · · · 0





zIn

z2In
...

zpIn


F (z) = (Ip ⊗ A0) τ (z)− (Ip ⊗ A0)Czτ (z)

= (Ip ⊗ A0) (Inp − Cz) τ (z)

= G (z) τ (z) , G (z) = (Ip ⊗ A0) (Inp − Cz)

where C is the multi-companion matrix or n-companion matrix, characterized by

parameters on the first n rows and an identity matrix starting on the (n+ 1)th row and

ending on the n (p− 1)th column. The np× np matrix G (z) represents the transforma-

tion of the np× n matrix τ (z) = ρ (z)⊗ In to generate the matrix polynomial F (z), and

(Ip ⊗ A0) is the Kronecker product of the p× p identity matrix Ip with the n× n matrix

of coefficients A0; thus, (Ip ⊗ A0) is a block-diagonal matrix with p blocks, each being A0.

Therefore, by expressing the matrix polynomial as the transformation G (z) applied to the

matrix τ (z), we can represent it as a polynomial with a single factor (Inp − Cz).

The reciprocal F (z)−1, defined as F (z)−1 F (z) = In, can be computed as the top-left

n× n block of the inverse matrix G (z)−1:

F (z) = G (z) τ (z) , [τ (z)](1:n),(1:n) = In

G (z)−1 F (z) = τ (z)

F (z)−1 =
î
G (z)−1

ó
(1:n),(1:n)

where [M ](a:b),(c:d) is an operator that extracts rows a to b, and columns c to d of matrix

M .

Under the assumption that all eigenvalues of the multi-companion matrix C lie inside

the unit circle and |z| ≤ 1, the inverse matrix G (z)−1 can be computed using the geometric
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series formula:

G (z)−1 = (Ip ⊗ A0)
−1 (Inp − Cz)−1

= (Ip ⊗ A0)
−1 (Inp + Cz + C2z2 + C3z3 + · · ·

)
This computation leads to the calculation of F (z)−1 as described earlier.

In Section 5.2, we demonstrated that when the coefficients of the polynomial F (z) are

scalars, the eigenvalues of the companion matrix C correspond to the inverted roots of the

polynomial F (z). However, when the coefficients are n× n matrices, equating F (z) to zero

yields n2 separate equations, which do not provide meaningful information. Nonetheless,

we can establish that the eigenvalues of the companion matrix C correspond to the inverted

roots of the polynomial representing the determinant of F (z):

det (F (z)) = β0 + β1z + β2z
2 + · · ·+ βnpz

np

This polynomial in z has a degree of np since each entry in F (z) is a polynomial of degree

p. The determinant includes additive terms where up to n entries in F (z) are multiplied

with each other, resulting in powers of z up to np. This means that det (F (z)) has np

roots, and their inverses correspond to the np eigenvalues of np× np companion matrix C.

To prove that the inverses of the np roots of the polynomial det (F (z)) correspond to

the np eigenvalues of np× np companion matrix C, we use the fact that a determinant

of zero det (F (r)) = 0 implies that the transformation F (r) compresses space into a lower

dimension. Therefore, the null space of F (r) is at least one-dimensional, indicating the

existence of a non-zero vector w (r) that transforms to the zero vector:

det (F (r)) = 0 ⇒ F (r)w (r) = 0

The vector w (r) depends on F (r) and, consequently, on the root r.
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Using this fact, we can compute the eigenvectors and eigenvalues of C as follows:

F (r)w (r) = 0

F (r) (1n ⊗ w (r)) = 0

(Ip ⊗ A0) (Inp − Cz) τ (z) (1n ⊗ w (z)) = 0

(Ip ⊗ A0) (Inp − Cz) (ρ (r)⊗ w (r)) = 0

C (ρ (r)⊗ w (r)) = r−1 (ρ (r)⊗ w (r))

Cv = λv, λ = r−1, v = ρ (r)⊗ w (r)

Hence, the eigenvalues of C satisfy the equation det
(
F
(
λ−1
))

= 0, and the corresponding

eigenvectors are obtained as v = ρ
(
λ−1
)
⊗ w

(
λ−1
)
. Consequently, if all inverted roots of

det (F (z)) lie inside the unit circle, it follows that all eigenvalues of C are also inside the

unit circle. As a result, Ck tends to zero as k approaches infinity.

So far, we have shown how to compute the reciprocal F (z)−1 when |z| ≤ 1 and when

the inverted roots of the polynomial det (F (z)) are inside the unit circle. Under these

assumptions, we can use the geometric series formula to compute the reciprocal as an

infinite sum of positive powers of z. However, to generalize the computation for any z and

any set of roots, we need to handle cases where the roots may lie both inside and outside

the unit circle. To achieve this, we can apply the Jordan decomposition to the matrix C.

In the Jordan decomposition, the eigenvalues of C are ordered such that they increase

in size. We can express the Jordan canonical form J as blocks corresponding to eigenvalues

that satisfy |λiz| < 1 and |λjz| > 1:

C = PJP−1 = P

J11 J12

0 J22

P−1

In this decomposition, the diagonals of the m×m matrix J11 correspond to eigenvalues λi

that satisfy |λiz| < 1, while the diagonals of the (np−m)× (np−m) matrix J22 correspond

to eigenvalues λj that satisfy |λjz| > 1.
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To compute the reciprocal F (z)−1, which is the top-left n× n block in G (z)−1, we

rewrite G (z)−1 in terms of the Jordan canonical form J of C:

G (z)−1 = (Ip ⊗ A0)
−1 (Inp − Cz)−1

= (Ip ⊗ A0)
−1 (Inp − PJP−1z

)−1

= (Ip ⊗ A0)
−1 P−1 (Inp − Jz)−1 P

Next, we need to determine the factor (Inp − Jz)−1 in G (z)−1. By writing the Jordan

canonical form J as block-upper triangular matrix as defined above, we can compute

(Inp − Jz)−1 as an infinite sum of both positive and negative powers of z:

(Inp − Jz)
−1

=

Ñ
Inp −

J11 J12

0 J22

 z

é−1

=

Im − J11z J12z

0 Inp−m − J22z

−1

=

(Im − J11z)
−1 − (Im − J11z)

−1
J12z (Inp−m − J22z)

−1

0 (Inp−m − J22z)
−1


=

(Im − J11z)
−1

(Im − J11z)
−1

J12zJ
−1
22 z−1

(
Inp−m − J−1

22 z−1
)−1

0 −J−1
22 z−1

(
Inp−m − J−1

22 z−1
)−1


=

(Im + J11z + J2
11z

2 + · · ·
) (

Im + J11z + J2
11z

2 + · · ·
)
J12z

(
J−1
22 z−1 + J−2

22 z−2 + · · ·
)

0 −
(
J−1
22 z−1 + J−2

22 z−2 + · · ·
)


Here, the geometric series formula is used to obtain the infinite sum, and the following

property for a block-upper triangular matrix is used to compute the inverse:

A X

0 B

−1

=

A−1 −A−1XB−1

0 B−1


Hence, we have a solution for G (z)−1, expressed as an infinite sum of both positive and

negative powers of z. This allows us to compute the reciprocal F (z) for any value of z and

for any set of roots, even when the roots may lie both inside and outside the unit circle.
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Note that if the companion matrix C is diagonalizable, then J12 = 0, and the Jordan

decomposition simplifies to the eigendecomposition. It is also worth mentioning that the

Jordan decomposition can be replaced with the Schur decomposition, where J is replaced

with the corresponding upper triangular matrix U and P is replaced with a unitary matrix

Q. The Schur decomposition can be computed faster than the Jordan decomposition,

making it a more efficient option in most cases. In fact, any decomposition of the form

C = B1B2B3 can be used, as long as B2 is an upper triangular matrix and the determinants

of B1 and B3 satisfy det (B1) det (B3) = 1. Different decompositions may have their own

advantages depending on the specific problem at hand.

6 Multivariate Stationary Time Series

6.1 Vector Autoregression (VAR)

A vector autoregression of order p, VAR(p), for two stochastic processes {Xt} and

{Zt}, is defined as a system of n = 2 equations where the regressors are the lagged values

of {Xt} and {Zt}:

Xt = δ1 + α11Xt−1 + · · ·+ α1pXt−p + β11Zt−1 + · · ·+ β1pZt−p + vt

Zt = δ2 + α21Xt−1 + · · ·+ α2pXt−p + β21Zt−1 + · · ·+ β2pZt−p + wt

where the errors vt and wt can be contemporaneously correlated, i.e. Cor (vt, wt) ̸= 0. This

correlation arises because Zt does not appear as a regressor in the equation for Xt, and vice

versa. Consequently, the unexplained fluctuations in Zt, represented by the error term wt,

are not controlled for in the equation for Xt, leading to the presence of these fluctuations

in the residual vt of Xt. As a result, the residuals vt and wt can be correlated, indicating

contemporaneous dependence between Xt and Zt beyond their lagged relationships.

To write the VAR(p) more efficiently, define Yt as a vector of n random variables, and
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ut as a vector of n residuals:

Yt =


Y1t
...

Ynt

 , ut =


u1t
...

unt

 , e.g. : Yt =

Xt

Zt

 , ut =

vt
wt



and then write the system of equations using matrix notation:

Yt = δ + Φ1Yt−1 + · · ·+ ΦpYt−p + ut

e.g. :Xt

Zt

 =

δ1
δ2

+

α11 β11

α21 β21

Xt−1

Zt−1

+ · · ·+

α1p β1p

α2p β2p

Xt−p

Zt−p

+

vt
wt


In this representation, δ is an n× 1 vector of coefficients, and Φl is an n× n matrix of coef-

ficients for each lag l. This compact notation allows us to treat the VAR(p) system similarly

to univariate AR(p) models, enabling the application of familiar tools and techniques for

analysis.

The VAR(p) residual covariance matrix Ω is an n× n matrix that captures the linear

dependencies among the contemporaneous residuals:

Ω =



Var (u1t) Cov (u1t, u2t) · · · Cov (u1t, unt)

Cov (u2t, u1t) Var (u2t) · · · Cov (u2t, unt)

...
...

. . .
...

Cov (unt, u1t) Cov (unt, u2t) · · · Var (unt)


e.g. :

Ω =

 Var (vt) Cov (vt, wt)

Cov (wt, vt) Var (wt)


The covariance between two random variables is not affected by the order of the variables,

i.e. Cov (uit, ujt) = Cov (ujt, uit). This property ensures that the covariance matrix Ω is
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symmetric, meaning that the number in the ith row and jth column is equal to the number

in the jth row and ith column. The off-diagonal entries in Ω measure the contemporaneous

relationships between variables, capturing dependencies that go beyond the lagged VAR

regressors.

The companion form of a VAR(p) expresses the VAR(p) as a VAR(1) as follows:

Yt = c+ CYt−1 + ut

Yt

Yt−1

...

Yt−(p−2)

Yt−(p−1)


=



δ

0

...

0

0


+



Φ1 Φ2 · · · Φp−1 Φp

In 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 0

0 0 · · · In 0





Yt−1

Yt−2

...

Yt−(p−1)

Yt−p


+



ut

0

...

0

0


Here, In represents an n× n identity matrix, and c is an np× 1 vector of coefficients,

where n is the number of variables, and p is the number of lags. The matrix C, known

as the multi-companion matrix or n-companion matrix, has a size of np× np. It

is characterized by parameters on the first n rows and an identity matrix starting from

the (n+ 1)th row and ending at the n (p− 1)th column. This compact form provides an

equivalent representation of the VAR(p) model in terms of a VAR(1) model with coefficient

matrices c and C.

The lag operator L can be extended to apply to vectors, allowing us to express lagged

values of a vector Yt. Specifically, LYt = Yt−1 represents shifting all variables in Yt one

period back, and LkYt = Yt−k represents shifting them k periods back. Using the lag

operator, the VAR(p) model can be expressed using lag polynomials, similar to how we

represent an AR(p) model:

Φ (L)Yt = δ + ut, Φ (L) = In − Φ1L− Φ2L
2 − · · · − ΦpL

p,

C (L)Yt = c+ ut, C (L) = Inp − CL
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Here, Φ (L) and C (L) are matrix polynomials in the lag operator L. To analyze and

compute properties of Φ (L) and C (L), we can replace the lag operator with a scalar

variable z belonging to the complex numbers C. By performing polynomial operations

on Φ (L) and C (L), such as computing the reciprocal, we can derive various properties

and alternative representations of the VAR(p) model. After completing the polynomial

operations, we can substitute z back with the lag operator L to express the results in terms

of lagged variables.

Similar to deriving the MA representation of an AR model, let’s iterate on the com-

panion form of the VAR(p) and try to compute an infinite-order vector moving average

process, VMA(∞):

Yt = c+ CYt−1 + ut

= c+ C (c+ CYt−2 + ut−1) + ut

= c+ C (c+ C (c+ CYt−3 + ut−2) + ut−1) + ut

...

=
(
In + C + C2 + C3 + · · ·

)
c+ Cut−1 + C2ut−2 + C3ut−3 + · · ·+ ut + lim

k→∞
CkYt−k

⇓

Yt = µ+Θut−1 +Θ2ut−2 +Θ3ut−3 + · · ·+ ut + lim
k→∞

ΘkYt−k

Here, Θ is defined as the n× n upper-left matrix of C, and µ is defined as the first n ele-

ments in
(
In + C + C2 + C3 + · · ·

)
c. We observe that the VMA(∞) representation exists

if Ck approaches zero as k goes to infinity, indicating no dependence on past observables.

Additionally, Ck should converge to zero sufficiently fast for the infinite sum
∑∞

l=0C
2l to

converge, ensuring that Yt has a finite mean and variance. This condition is known as

square summability, which is a weaker condition than absolute summability. Abso-

lute summability is defined as the convergence of
∑∞

l=0

∣∣C l
∣∣. Absolute summability and

thus square summability occur when all eigenvalues of the companion matrix C have mod-

uli smaller than one. In such cases, the geometric series formula can be applied, resulting
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in
∑∞

l=0

∣∣C l
∣∣ ≤∑∞

l=0 |C|
l = (In − |C|)−1, which is finite.

From Section 5.4, we learned that the eigenvalues of the companion matrix C are

the inverted roots of the determinant of the matrix polynomials C (z) = (In − Cz) or

Φ (z) = In − Φ1z − · · · − Φpz
p. This property is known as stability. In other words, a

VAR(p) is considered stable if all the roots of the determinant of the polynomial Φ (z)

have a modulus greater than one:

det
(
In − Φ1z − Φ2z

2 − · · · − Φpz
p
)
̸=0, for |z| ≤ 1

Just like with AR models, stability implies stationarity, as a stable VAR has a VMA(∞)

representation that depends on residuals with a constant distribution. However, it’s im-

portant to note that stationarity does not always imply stability.

6.2 VAR as a Linear Regression

Before expressing the VAR model as a linear regression, let’s consider the standard linear

regression model for cross-sectional data:

Yi = β0 + β1Xi,1 + · · ·+ βkXi,k + ui

= Xiβ + ui, Xi =
[
1 Xi,1 · · · Xi,k

]
β =

[
β0 · · · βk

]′
i = 1, 2, . . . ,m

In this model, we have an observation indexed by i, where Yi and Xi,j are scalar ran-

dom variables describing the observation, and ui represents the part of Yi that cannot be

explained with the regressors.

We can combine the random variables of all m observations into m× 1 vectors, where
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each element represents a different observation:

Y =


Y1
...

Ym

 , X(j) =


X1,j

...

Xm,j

 , u =


u1
...

um


Moreover, let’s combine the constant and all k regressors into an m× k matrix:

X =
[
1m X(1) X(2) · · · X(k)

]
=


1 X1,1 X1,2 · · · X1,k

...
...

... · · ·
...

1 Xm,1 Xm,2 · · · Xm,k


where 1m is an m× 1 vector of ones. Then we can combine all observations of the linear

regression as follows:

Y = Xβ + u, β =


β0
...

βk


Hence, assuming no correlation between regressors and residuals, we obtain the least

square (LS) estimator β̂:

E [Xi,jui] = 0, ∀i, ∀j

E [X ′u] = 0

E [X ′ (Y −Xβ)] = 0

β = E [X ′X]
−1
E [X ′Y ]

β̂ = (X ′X)
−1

(X ′Y )

Here, β is a constant parameter vector, and β̂ is a random vector, as it is a function of the

random variables X and Y .

Now let’s extend this regression framework to a VAR(p) for the stochastic n-dimensional
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vector process {Yt}:

Yt = δ + Φ1Yt−1 + · · ·+ ΦpYt−p + ut

= BVt + ut, Vt =
[
1 Y ′

t−1 · · · Y ′
t−p

]′
B =

[
δ Φ1 · · · Φp

]
t = 1, 2, . . . , T

Here, Yt represents the n-dimensional random vector at time t, δ is a constant vector, Φl

is the VAR coefficient matrix at lag l, Vt is the stacked lagged vector at time t, and ut is

the error vector at time t.

While the standard linear regression model has just one equation, the VAR model has

n equations. We discuss two ways to deal with this. First, we can express the VAR as

a general linear model, also known as a general multivariate regression model,

where n regressions are performed simultaneously. Second, we can rewrite the VAR so that

it becomes a single equation, allowing us to estimate it as the standard linear regression

model discussed above.

To express the VAR as a general multivariate regression model, we can combine the

n-dimensional random vectors of all T observations into T × n matrices, where each row

represents a different observation:

W =


Y1,1 · · · Y1,n
... · · ·

...

YT,1 · · · YT,n

 , V (l) =


Y1−l,1 · · · Y1−l,n

... · · ·
...

YT−l,1 · · · YT−l,n

 , S =


u1,1 · · · u1,n
... · · ·

...

uT,1 · · · uT,n


Here,W represents the dependent variables, V (l) refers to the lth lag ofW , and S represents

the stacked error matrix. Next, we combine the constant and all np regressors into a

56



T × n (p+ 1) matrix:

V =
[
1T V (1) · · · V (p)

]
=


1 Y1−1,1 · · · Y1−1,n · · · Y1−p,1 · · · Y1−p,n

...
... · · ·

... · · ·
... · · ·

...

1 YT−1,1 · · · YT−1,n · · · YT−p,1 · · · YT−p,n


where 1T represents a T × 1 vector of ones. Now, we can combine all observations of the

VAR(p) as follows:

W = V B′ + S, B =
[
δ Φ1 · · · Φp

]

The assumption that there is no correlation between regressors and residuals leads to the

multivariate LS estimator B̂′:

E [Yt−l,iut,j] = 0, t = 1, . . . , T, l = 1, . . . , p, i, j = 1, . . . , n

E [V ′S] = 0

E [V ′ (W − V B′)] = 0

B′ = E [V ′V ]
−1
E [V ′W ]

B̂′ = (V ′V )
−1
V ′W

Here, B̂ is a matrix of random variables, as it is a function of the random matrices V and

W , whereas B is a constant matrix of parameters.

The second approach involves expressing the VAR model as a single equation using the

Kronecker product and the vec operator. The Kronecker product, denoted as A⊗B,

multiplies each element of the first matrix by the entire second matrix, while the vec
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operator, represented as vec(A), stacks the columns of a matrix into a vector:

a b

c d

⊗

α β

γ δ

 =


a

α β

γ δ

 b

α β

γ δ


c

α β

γ δ

 d

α β

γ δ



 , vec

a b

c d

 =


a

c

b

d


These operators satisfy the following properties:

(A+B)⊗ (C +D) = A⊗ C + A⊗D +B ⊗ C +B ⊗D

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

(A⊗B)−1 = A−1 ⊗B−1

(A⊗B)′ = A′ ⊗B′

vec(aA+ bB) = avec(A) + bvec(B)

vec(ABC) = (C ′ ⊗ A) vec(B)

Applying the vec operator to the VAR model, we have:

vec (Y ′
t ) = vec (V ′

tB
′) + vec (u′t)

Yt = (In ⊗ V ′
t ) vec (B

′) + ut

Yt = Xtβ + ut, Xt = In ⊗ V ′
t

β = vec (B′)

Thus, we obtain the standard least squares (LS) estimator β̂ as in the cross-sectional case.

One advantage of this form is that standard linear regression formulas for covariance matrix

estimation can be utilized, such as the ones discussed in White (2000).
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6.3 Vector Autoregressive Moving Average (VARMA) Model

When working with univariate time series in Section 3, we not only had AR models for

stationary time series but also MA and ARMA models. For multivariate time series, these

models are called vector moving average models of order q, VMA(q), and vector

autoregressive moving average models of order p and q, VARMA(p, q). However,

the vector versions of these time series models are not always identified, meaning that it’s

possible to have two VARMA models with different AR and MA lags that produce exactly

the same data.

To illustrate the identification problem, consider the example of distinguishing a VAR(1)

from a VMA(1), respectively a VARMA(1, 0) from a VARMA(0, 1):

Yt = Φ1Yt−1 + ϵt ⇒ Yt = Φ1ϵt−1 + Φ2
1ϵt−2 + Φ3

1ϵt−3 + · · ·+ ϵt

Yt = Θ1ϵt−1 + ϵt ⇒ Yt = Θ1ϵt−1 + (0)ϵt−2 + (0)ϵt−3 + · · ·+ ϵt

The two models have the same VMA(∞) representation if the parameters satisfy the fol-

lowing condition:

Φj
1 =


Θ1 j = 1

0 j ≥ 2

In the univariate case, when Φ1 and Θ1 are scalars, the above condition is only satisfied if

Φ1 = Θ1 = 0. This makes them white noise processes rather than AR and MA processes

and therefore AR and MA processes cannot generate the same data.

However, in the multivariate case when Φ1 and Θ1 are n× n matrices, it is possible for

this condition to hold even when Φ1 ̸= 0. Specifically, the condition holds when Φ1 is a

nilpotent matrix, meaning that Φ1 ̸= 0 and Φ2
1 = 0. For example, consider the following

59



nilpotent matrix:

Φ1 =


0.5 −0.3 0.2

1.5 −0.9 0.6

1 −0.6 0.4

 ⇒ Φ2
1 =


0 0 0

0 0 0

0 0 0


In this case, the VAR(1) and VMA(1) model with Θ1 = Φ1 exhibit the same VMA(∞)

representation. As a result, these models are observationally equivalent, meaning they

generate the same data and cannot be distinguished based on the available information.

There are several techniques discussed in the literature to handle this identification

problem, and VARMA models are gaining attention. However, in macroeconomics litera-

ture, most researchers rely on VAR models instead. VAR models have the advantage that

they are easy to estimate, and by limiting the model to only autoregressive components,

they avoid this identification problem.

6.4 Structural Vector Autoregression (SVAR)

Because the VAR model is multivariate, it allows us to measure the causal effects between

variables. In a cross-sectional setting, we can measure the causal effect of variable X on Y

as the coefficient β1 in a linear regression:

Yi = β0 + β1Xi + ui

However, in a time-series setting, the parameters of a VAR do not have a straightforward

causal interpretation. For example, an exogenous change in variable X at time t− 2 not

only affects Y at time t, but it also affects Xt−1, which in turn has an effect on Yt, as

well. Thus, the overall effect of Xt−2 on Yt involves multiple parameters and cannot be

attributed to a single coefficient.

To measure causal effects in a time-series setting, impulse response functions (IRFs)

are used. IRFs measure the (causal) response of variables over time to an exogenous change
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in their values, a so-called impulse. For example, consider a VAR of two stochastic pro-

cesses: {Xt} and {Zt}. The IRF of {Xt} to an impulse d = (d1, d2) measures the causal

response of Xt+h, for h = 0, 1, 2, . . ., to an exogenous increase in Xt and Zt by d1 and d2

respectively.

Formally, the IRF of {Xt} to an impulse d at horizon h is the change in the forecasted

value when Xt and Zt increases by d:

IRFX
h,t = E[Xt+h|Ît]− [Xt+h|It]

Ît = σ(Xt + d1, Xt−1, Xt−2, . . . , Zt + d2, Zt−1, Zt−2, . . . ),

It = σ(Xt, Xt−1, Xt−2, . . . , Zt, Zt−1, Zt−2, . . . ) h = 0, 1, 2, . . .

t = 1, . . . , T

In the above equation, σ(·) represents an operator that constructs an information set based

on random variables, but its details are not relevant here.

In a linear system, the effect of a change is independent of the initial values before the

change is applied. This means that increasing Xt and Zt by d1 and d2 respectively has

the same effect on the forecasted value of Xt+h regardless of the initial values Xt and Zt.

Therefore, in a VAR model, the IRFs are time-independent, i.e., IRFX
h,t = IRFX

h for all

t.

The challenge is to create a meaningful impulse vector d. For example, when studying

the causal effect of interest rates Xt on inflation Zt, one might be tempted to set d = (1, 0)

to represent an exogenous increase in Xt while keeping Zt constant. However, this impulse

is not meaningful because it is impossible to change the interest rate exogenously without

simultaneously affecting inflation. In practice, when the interest rate changes, firms are

likely to adjust prices immediately, leading to a non-zero impact on inflation. Therefore,

d = (1, 0) does not represent a meaningful impulse vector.

To establish meaningful impulses, we connect the vector autoregression (VAR) model

with economic theory, resulting in a structural vector autoregression (SVAR). In construct-
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ing an SVAR, we start with a system of simultaneous equations that captures all causal

dependencies among variables. Unlike a VAR, Xt directly responds to Zt and vice versa:

Xt = τ1 + λ10Zt + κ11Xt−1 + · · ·+ κ1pXt−p + λ11Zt−1 + · · ·+ λ1pZt−p + σ1ϵ1t

Zt = τ2 + κ20Xt + κ21Xt−1 + · · ·+ κ2pXt−p + λ21Zt−1 + · · ·+ λ2pZt−p + σ2ϵ2t

The residuals ϵ1t and ϵ2t are uncorrelated since the system captures all interdependencies

among the variables. Specifically, we have Var(ϵ1t) = 1, Var(ϵ2t) = 1, and Cov(ϵ1t, ϵ2t) = 0.

This is different from the error terms in a VAR, where cor(u1t, u2t) ̸= 0.

The above system of simultaneous equations should reflect meaningful relationships

derived from economic theory. Taking the example of interest rates and inflation, the first

equation could describe the conduct of monetary policy by the central bank, while the

second equation could capture how firms set prices. In these equations, each parameter

holds economic significance and represents a causal effect. This system of equations with

economic interpretations is referred to as the structural form, whereas the VAR represents

the reduced form. Identification is the process of deriving the meaningful structural

form from the reduced form. It is worth noting that in economics, the structural form may

take the form of a rational expectations model, incorporating additional terms that

capture individuals’ expectations.

The residuals in the structural form, denoted as ϵ1t and ϵ2t, represent changes in the

variables Xt and Zt that are completely independent of the relationships between the two

stochastic processes Xt and Zt. As these structural form residuals are exogenous, they are

commonly referred to as shocks or structural shocks. Consequently, the impulse response

functions (IRFs) of Yt and Xt to an increase in the shocks ϵ1t and ϵ2t carry meaning, as

these shocks exogenously shift Xt and Yt.

To compute IRFs to the meaningful shocks ϵ1t and ϵ2t, we first need to determine the

contemporaneous effects of these shocks on Xt and Yt. This will allow us to derive the

impulse vectors we are interested in. To do this, we substitute Xt and Yt on the right-hand

side of the structural form and reorganize the equations to match the VAR. Let’s consider
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the simplified case where there is only one lag in the system, i.e., p = 1. We obtain the

following VAR model:

Xt =
τ1 + λ10f2
1− λ10κ20︸ ︷︷ ︸

δ1

+
κ11 + λ10κ21
1− λ10κ20︸ ︷︷ ︸

α11

Xt−1 +
λ11 + λ10λ21
1− λ10κ20︸ ︷︷ ︸

β11

Zt−1 +
σ1

1− λ10κ20
ϵ1t +

λ10σ2
1− λ10κ20

ϵ2t︸ ︷︷ ︸
u1t

Zt =
τ2 + κ20f1
1− κ20λ10︸ ︷︷ ︸

δ2

+
κ21 + κ20κ11
1− κ20λ10︸ ︷︷ ︸

α21

Xt−1 +
λ21 + κ20λ11
1− κ20λ10︸ ︷︷ ︸

β21

Zt−1 +
κ20σ1

1− κ20λ10
ϵ1t +

σ2
1− κ20λ10

ϵ2t︸ ︷︷ ︸
u2t

Hence, we have derived a VAR model, but now the residuals u1t and u2t, and thus Xt and

Yt, depend on meaningful shocks ϵ1t and ϵ2t.

The impulse vectors d(1) and d(2) represent the effects of the shocks ϵ1t and ϵ2t on con-

temporaneous Yt and Xt, respectively. These impulse vectors can be derived by computing

the following partial derivatives:

d(1) =

 ∂Yt∂ϵ1t
∂Xt

∂ϵ1t

 =

∂u1t∂ϵ1t
∂u2t
∂ϵ1t

 =

 σ1
1− λ10κ20
κ20σ1

1− κ20λ10

 , d(2) =

 ∂Yt∂ϵ2t
∂Xt

∂ϵ2t

 =

∂u1t∂ϵ2t
∂u2t
∂ϵ2t

 =

 κ20σ1
1− κ20λ10

σ2
1− κ20λ10


Since the impulse vectors depend solely on how the VAR residuals depend on the shocks,

we can disregard the other terms and focus on relating the VAR residuals to the structural

shocks:

u1t = a11ϵ1t + a12ϵ2t, a11 =
σ1

1− λ10κ20
, a12 =

κ20σ1
1− κ20λ10

,

u2t = a21ϵ1t + a22ϵ2t, a21 =
κ20σ1

1− κ20λ10
, a22 =

σ2
1− κ20λ10

,

This can be further represented as:

ut = Aεt

where A =

a11 a12

a21 a22

 is the impact matrix. Note that the ith column of A repre-

sents the impulse vector of the ith shock; hence, in the bivariate example we have that

A =
[
d(1) d(2)

]
.

The structural vector autoregression (SVAR) is defined as a VAR where the residuals
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are replaced by the meaningful shocks:

Xt = δ1 + α11Xt−1 + · · ·+ α1pXt−p + β11Zt−1 + · · ·+ β1pZt−p + a11ϵ1t + a12ϵ2t

Zt = δ2 + α21Xt−1 + · · ·+ α2pXt−p + β21Zt−1 + · · ·+ β2pZt−p + a21ϵ1t + a22ϵ2t

⇓

Yt = δ + Φ1Yt−1 + · · ·+ ΦpYt−p + Aϵt

Hence, the only difference between a VAR and a SVAR is that ut is replaced with Aϵt. This

definition also applies to the general case where Yt, ut, and ϵt are n-dimensional vectors of

random variables, and A is an n× n impact matrix.

The impulse response functions (IRFs) to the n structural shocks are then defined as

follows:

γ
(k)
h = E[Yt+h|σ

Ä
Yt + δ(k), Yt−1, Yt−2, . . .

ä
]− E[Yt+h|σ(Yt, Yt−1, Yt−2, . . . )] h = 0, 1, 2, . . .

Combining these IRFs, we obtain:

Γh =
[
γ
(1)
h · · · γ

(n)
h

]
= ΘhA h = 0, 1, 2, . . .

Here, the ith row and jth column of Γh represents the IRF of the ith variable Yi,t+h to the

jth shock ϵj,t. Note that Θh is the n×nmatrix of coefficients of the VMA(∞) representation

at lag h, and A is the n× n impact matrix.

While data can be used to estimate the VAR parameters {δ,Φ1, . . . ,Φp,Ω}, the impact

matrix A needs to be derived using additional assumptions from economic theory, which

are called identifying restrictions. The reason for requiring additional restrictions is that

the covariance matrix Ω of the VAR residuals ut is symmetric and provides only n(n+1)
2

parameters, whereas the impact matrix A has n2 parameters. Therefore, we need n(n−1)
2

additional equations derived from economic theory to estimate A. Note that the number of

restrictions required increases rapidly with n; for example, when n = 8, we have n(n−1)
2

= 28
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restrictions.

In particular, to estimate A when n = 2, we can relate the estimated variances and

covariances of the VAR residuals to A as follows:

Var(u1t) = Var(a11ϵ1t + a12ϵ2t) = (a11)
2 + (a12)

2

Var(u2t) = Var(a21ϵ1t + a22ϵ2t) = (a21)
2 + (a22)

2

Cov(u1t, u2t) = Cov(a11ϵ1t + a12ϵ2t, a21ϵ1t + a22ϵ2t) = a11a21 + a12a22

However, we have only three equations for four unknowns, namely a11, a12, a21, and a22.

Thus, we need one additional equation to identify the SVAR, as expected since n = 2

implies n(n−1)
2

= 1. For example, one could use economic theory to argue that an exogenous

increase in the interest rate of one percentage point increases the inflation rate by one-half

percentage point, which adds a fourth equation a21 = 1
2
a11, resulting in a unique impact

matrix A.

It is common to identify a structural VAR using the recursive approach, which as-

sumes that A is a lower-triangular matrix where aik = 0 for all k > i:

A =



a11 0 0 · · · 0

a21 a22 0 · · · 0

a31 a32 a33 · · · 0

...
...

...
. . .

...

an1 an2 an3 · · · ann


This leads to 1

2
n(n−1) identifying restrictions, which are sufficient for SVAR identification.

For those interested in technical details, this restriction implies that B can be obtained as

the Cholesky decomposition of the residual covariance matrix Ω, where Ω = BB′.

The recursive approach implies that the first shock of the SVAR can have a contempo-

raneous effect on all variables in the model, while the second shock only affects the second

to last variables on impact, the third shock only affects the third to last variable, and so
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on. Therefore, the order of variables matters when using the recursive approach. However,

note that the ordering of variables in a VAR matters only for impulse response functions

(IRFs), as for forecasting purposes, ordering does not matter.

While we have only imposed identifying restrictions on contemporaneous effects, it

is also possible to identify an SVAR by imposing restrictions on the impulse response

functions (IRFs) or on the long-run relationships between cumulated variables. There is a

vast literature on SVAR that provides a comprehensive discussion of the different types of

identifying restrictions that can be used.

When variables have been transformed to achieve stationarity, the IRFs may not provide

a comprehensive understanding of the original variable. For instance, while the IRF of a

growth rate variable indicates the growth rate at each time horizon, it doesn’t reveal the

overall effect. To overcome this limitation, the cumulative impulse response function

(CIRF) is used. The CIRF calculates the total effect by cumulating the IRFs at each

horizon:

CIRFh =
h∑

k=0

IRFk

The CIRF of a differenced variable is equivalent to the IRF of the original time series. For

example, the CIRF of the change in unemployment is the IRF of the unemployment level,

and the CIRF of net immigration is the IRF of the total population due to migration. The

CIRF of a growth rate variable is obtained by multiplying the IRF of the logarithm of the

original series by 100. For instance, the CIRF of GDP growth is the IRF of 100 times the

logarithm of GDP, and the CIRF of inflation is the IRF of 100 times the logarithm of the

price level. It is important to note that the CIRFs are meaningful only for differenced series.

For example, the CIRF of unemployment has no interpretation, and the same applies to

the CIRF of an interest rate.

7 Multivariate Non-Stationary Time Series
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7.1 Spurious Regression

In Section 4.1, we discussed the importance of stationarity in time series analysis, as it

allows us to combine observations across time to make inferences about the underlying con-

stant distribution. An alternative assumption is that the process could be non-stationary,

yet the transition in distribution isn’t random. Instead, it changes gradually over time,

indicating the presence of a trend in the time series. Incorporating this trend into the

model effectively controls for the changes in the distribution. As a result, the detrended or

differenced process is stationary.

Estimating this gradual change in distribution can be achieved through the presumption

that the mean of the time series varies according to a predefined deterministic function, or

by utilizing tests such as the Dickey-Fuller test to discern the number of unit roots in a

process. Stationarity allows us to exploit data properties, like autocorrelation and partial

autocorrelation functions, for the selection of an appropriate model. However, trends differ

as they span the entire time series without repetition. Therefore, trend patterns, such as

linear trends, appear only once, unlike stationary patterns like business or seasonal cycles,

which recur across the time series. Due to this, relying solely on data for determining

the correct trend specification is less enlightening than selecting a stationary model, and

researchers’ assumptions about the trend profoundly influence the results.1

The challenge of a trend extending across the entire time series becomes especially

noticeable when investigating causal relationships between time series. For instance, if two

time series are independent but both display an upward trend, a regression of one on the

other without taking the trends into account might erroneously suggest a strong causal

relationship. This error arises as both time series demonstrate an increasing pattern over

time, leading to the false impression that the escalation in one time series triggered the

1A potential approach to addressing the issue of observing a trend only once per time series sample
involves the use of panel data. This data type comprises time series for multiple entities, like tracking
technological progress over the past two decades for fifty different countries. By presuming each entity
follows the same trend specification, we can obtain as many trend observations as there are entities. This
enables us to evaluate which trend specification is appropriate for technological progress. For example, it
allows us to discern whether technology is trend-stationary or difference-stationary.
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rise in the other. Similarly, if both time series display a stochastic trend, their persistence

could be high, resulting in both time series primarily moving in one direction throughout

the sample period. This could result in a false impression of a robust causal relationship.

This effect is known as spurious regression, first introduced by Granger and Newbold

(1974). While the regression of two stationary time series on each other would yield a

zero coefficient if they are independent, non-stationary time series may produce highly

significant and non-zero coefficients.

Specifically, conducting a spurious regression of one random walk onto another inde-

pendent random walk results in a coefficient that doesn’t converge to its true value -

zero. Instead, it follows a non-degenerate distribution. Consequently, the t-value of this

regression often surpasses the critical values of a normal distribution, implying a signifi-

cant relationship. Furthermore, the R-squared value is usually high because the omitted

trend contributes substantially to the sample variance, which is erroneously ascribed to the

regressor.

Interestingly, this still happens even when comparing two random walks that don’t

have a drift. One would expect, especially with infinite data, the series would sometimes

move together, but just as often move in opposite directions, balancing out any apparent

relationship. But here’s the catch - the variance of a random walk increases over time.

This means that the importance of early observations compared to later ones shrinks to

nothing. So, even though one might technically have an infinite number of observations,

the ones that actually matter - those contributing to the overall variance - remain finite.

Therefore, the takeaway is that the mere movement of two time series in tandem doesn’t

imply a relationship between them. One sign of a spurious regression is a high persistence

of the regression residual, suggesting that the two time series follow different trends. Con-

sequently, a spurious regression that accounts for one trend doesn’t fully control for the

other, leading to regression residuals that still exhibit a trend. Another indicator is a dra-

matic change in results upon modifying the regression specification, such as incorporating

additional lags of the dependent variable. These lagged variables can help account for some
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of the trend, thereby reducing the attributed impact of the trend to the other time series.

7.2 Cointegration

The prevous section revealed highlights the risk of spurious regressions: the erroneous

regression of two independent, non-stationary time series on each other often results in

a regression coefficient that is significantly different from zero. In contrast, this section

explores the regression of two non-stationary time series on each other when they are not

independent, but actually related.

We refer to such time series as cointegrated if they are non-stationary due to a stochas-

tic trend, but the stochastic trend of some of the time series is either driven by other time

series or multiple time series share the same stochastic trend. Formally, the n-dimensional

vector of stochastic processes {Yt} is considered cointegrated if all n time series have a unit

root, but there exists a linear combination β′Yt = β1Y1t + · · ·+ βnYnt that is stationary.

For example, consider the following system of processes:

Y1t = γ1Y2t + γ2Y3t + σ1ϵ1t

Y2t = γ3Y3t + σ2ϵ2t

Y3t = Y3,t−1 + σ3ϵ3t

where ϵ1t, ϵ2t, and ϵ3t are i.i.d. shocks. In this system, Y3t may represent technological

progress, which is often modeled as a random walk due to its cumulative nature: tech-

nological progress cannot be reversed, and it continues to accumulate over time. Y2t rep-

resents hours worked, which could potentially decrease with advancements in technology,

i.e. γ3 < 0. Y1t represents output per capita, which depends positively on both technologi-

cal progress and hours worked, i.e. γ1 > 0 and γ2 > 0. Note that in the system described,

there is only one source of stochastic trend caused by the technology shock ϵ3t, as it is the

only shock with a permanent effect.

All three processes, Y1t, Y2t, and Y3t, are individually integrated of order one, denoted
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as I(1). This is because Yt exhibits a stochastic trend, while the first difference, ∆Yt, is

stationary. However, in this case, differencing the variables is not the appropriate approach,

as ∆Yt would follow a VAR(∞). Instead, we can directly identify the system with its

cointegrated relationships.

The cointegrated relationships can be represented as β′
1 =

[
1 −γ1 −γ2

]
and β′

2 =[
0 1 −γ3

]
, which result in two stationary processes: β′

1Yt = σ1ϵ1t and β′
2Yt = σ2ϵ2t.

These cointegrated relationships can be identified by performing a regression using the

first or second equation. That’s possible because In the presence of cointegration, the

estimated coefficients of the regression model are (super-)consistent and have meaningful

interpretations, unlike a spurious regression where the coefficients are spurious and do not

converge to their true values.

While the residuals of a spurious regression have a unit root, the residuals of a regres-

sion with cointegrated variables are stationary. This is because any deviations from the

cointegrated relationship are expected to be temporary. As a result, while the coefficients

of spurious regressions do not converge to zero, the coefficients of a regression with cointe-

grated variables are superconsistent. This means that they converge to the true parameter

value at a rate faster than the square root of the sample size.

The reason behind this faster convergence is as follows: In spurious regressions, the

residual exhibits a unit root, leading to an increasing residual variance over time. On

the other hand, in the presence of cointegration, the residual is stationary, resulting in a

constant residual variance. Furthermore, the variance of the dependent and explanatory

variables continues to increase with the sample size, making the contribution of the residual

less relevant. As a result, there is very little uncertainty in the parameter estimates, leading

to the rapid convergence of the coefficients.

Numerous economic theories suggest cointegration. For instance:

1. Consumption and Income: According to the Permanent Income Hypothesis, con-

sumers’ spending habits are influenced not only by their current income, but also

by their future expected income. Therefore, although both consumption and income
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may individually follow random walks, they move together in the long run and are

likely cointegrated.

2. Investment and Savings: Economic theory posits that investment and savings

should be equal in the long run. Even if savings and investment each follow a random

walk, the difference between the two should be stationary, implying that these two

series are cointegrated.

3. Money Demand: In monetary economics, the demand for money is said to depend

on income and interest rates. Thus, if these variables are non-stationary, then the

money demand might also be non-stationary, and these variables could be cointe-

grated.

4. Purchasing Power Parity: According to this theory, the exchange rate between two

countries’ currencies is determined by the price levels in the two countries. Therefore,

if the price levels are non-stationary, then the exchange rate might also be non-

stationary, and these variables could be cointegrated.

The cointegrated relationships play a crucial role in capturing the long-term equilibrium

among a vector of cointegrated time series. However, it is also important to understand the

dynamics of the temporary deviations from those relationships. The vector error correction

model (VECM), which will be introduced in Section 7.4, encompasses both aspects.

7.3 Consistency of Regression Coefficients Under Non-Stationarity

This section explores how non-stationarity affects the convergence of regression coefficients,

illustrated through the following data generating process (DGP):

Xt = ρXt−1 + ηt ηt
i.i.d.∼ N(0, σηη)

Yt = ϕYt−1 + γXt + ϵt ϵt
i.i.d.∼ N(0, σϵϵ)
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where the parameters |ρ| ≤ 1, |ϕ| ≤ 1, and γ determine whether or not the stochastic

processes {Yt} and {Xt} exhibit a stochastic trend. Specifically, {Yt} and {Xt} are both

I(1) with separate stochastic trends if ρ = ϕ = 1 and γ = 0. This represents the scenario of

spurious regression when regressing Yt onXt likely yields a significant non-zero coefficient

instead of γ = 0. In contrast, if ρ = 1, ϕ = 0, and γ ̸= 0, then {Yt} and {Xt} are both

I(1) but share the same stochastic trend. This is the scenario of cointegration, where

regressing Yt on Xt produces an unbiased estimate of γ, and the p-values are too high,

indicating that the precision of the estimate is higher than standard regression results

would suggest.

Mathematically, the challenge with spurious regression is that the regression coefficient

does not converge to zero even as the number of observations increases, which is problematic

when no true relationship exists between the variables. Conversely, with cointegration, the

benefit is that the regression coefficient converges to the true value more rapidly than it

would under conditions of stationarity, a phenomenon referred to as superconsistency.

To illustrate this, consider the following linear regression model:

Yt = βXt + ut

where ut is the regression residual. By definition of a linear regression, ut satisfies the zero

conditional mean (ZCM) assumption, that is, E[ut|Xt] = E[ut] = 0 for all t.

The regression residual ut is an unobserved variable, also known as latent variable,

meaning there is no actual data available for ut. Therefore, to estimate β, we must formulate

the estimation process without directly including ut since it does not exist in the data

set. This is accomplished by employing the Zero Conditional Mean (ZCM) assumption,

which implies E[Xtut] = 0, since ut inside the expectation operator can be replaced by

E[ut|Xt] = 0 using the law of iterated expectations. Substituting the residual with the

regression equation leads to E[Xt(Yt − βXt)] = 0. Estimating β then involves replacing
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the expectation operator with the sample mean across T periods:

1

T

T∑
t=1

Xt(Yt − β̂Xt) = 0 ⇒ β̂ =
1
T

∑T
t=1XtYt

1
T

∑T
t=1X

2
t

Thus, we have obtained an estimate β̂ of β.

The regression estimate β̂ is dependent on random variables, making it a random vari-

able itself, whereas the true coefficient β is a fixed constant. To understand their relation-

ship, substitute Yt with its regression model in the formula for β̂:

β̂ =
1
T

∑T
t=1Xt(βXt + ut)
1
T

∑T
t=1X

2
t

= β +
1
T

∑T
t=1Xtut

1
T

∑T
t=1X

2
t

= β +
Q̂Xu

Q̂XX

Here, Q̂XX and Q̂Xu are the sample estimates of E[X2
t ] and E[Xtut], respectively. This

holds under the assumption of stationarity. However, if the series are non-stationary, the

expectation for different time periods may differ; hence, a more accurate characterization of

Q̂XX and Q̂Xu is that they are the sample estimates of 1
T

∑T
t=1E[X

2
t ] and

1
T

∑T
t=1E[Xtut],

respectively, which appropriately account for the potential variations across different time

periods t.

What does β measure? To verify whether β accurately captures γ, we must examine

the regression in the context of the two processes and understand that β = γ implies ut =

ϕYt−1+ ϵt. Therefore, the regression correctly identifies β = γ as long as the corresponding

ZCM condition is met, i.e., E[ut|Xt] = E[ϕYt−1 + ϵt|Xt] = 0. Note that ϕYt−1 depends on

Xt−1 via γ, and Xt depends on Xt−1 through ρ. Thus, the ZCM assumption requires that

one of the parameters ρ, ϕ, or γ must be zero for the regression to be an unbiased estimator

of γ, i.e. ZCM requires ρϕγ = 0.

The process of determining what the parameter β measures is known as identification.

Identification involves expressing the empirical parameter β in terms of the theoretical pa-

rameters γ, ϕ, and ρ of the data generating process. The regression model with parameter

β is referred to as reduced form, which can be directly estimated from data. In contrast,
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the data generating process characterized by parameters γ, ϕ, and ρ is known as the struc-

tural form, which may require additional assumptions and steps for identification. The

steps to identify β are similar to those for calculating β̂ but involve using the expectation

operator:

1

T

T∑
t=1

E[Xt(Yt − β̂Xt)] = 0 ⇒ β =
1
T

∑T
t=1E[XtYt]

1
T

∑T
t=1E [X2

t ]

Next, noting that E[Xt] = 0 implies E
[
X2

t

]
= V ar(Xt), we substitute for Xt and Yt using

the data generating process, which results in the following expression for β:

β = γ + γ
1
T

∑T
t=1

∑t−1
l=1 ϕ

lρlV ar(Xt)
1
T

∑T
t=1 V ar(Xt)

The variance of Xt depends on the persistence parameter ρ as follows:

V ar(Xt) =


σηη

1−ρ2
if |ρ| < 1

σηηt if ρ = 1

Substituting for V ar(Xt) and applying the geometric series formula then yields the following

values for β:

β =


γ + γϕρ

1−ϕρ
(1− o(1)) if |ϕ| < 1(

T+2
3

)
γ if ρ = ϕ = 1

where o(1) denotes an expression that goes to zero as T approaches infinity. This confirms

that the regression is an unbiased estimator for γ if ϕγρ = 0.

Checking whether a regression parameter is unbiased is not sufficient for identification.

We must also ensure that the estimated coefficient β̂ converges to its expected value as

the sample size increases, i.e., β̂ →
p
β as T → ∞. This concept is referred to as the

consistency of β̂. To demonstrate that β̂ is consistent, one approach is to show that its

variance diminishes to zero as T increases, implying that β̂ stabilizes to a constant value.

Since E[β̂] = β, this constant would equal β. This behavior is based on Chebyshev’s

Inequality, which states that if the variance of a sequence of random variables approaches
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zero, the sequence will converge in probability to its expected value.

Use the formula for β̂ and the property that shifting a random variable by a constant

β does not affect its variance to derive the following equation:

V ar(β̂) = V ar

Ç
Q̂Xu

Q̂XX

å
where Q̂Xu is the sample covariance between Xt and ut over t = 1, . . . , T , and Q̂XX is the

sample variance of Xt over the same period. A dataset provides only one outcome of the

random variables β̂, Q̂Xu, and Q̂XX . Therefore, direct computation of the variance is not

feasible without additional assumptions.

A valuable approach to calculating the variance is to use the law of total variance,

also known as Eve’s law, which decomposes the variance into the expectation of the

conditional variance and the variance of the conditional expectation:

V ar(A) = E[V ar(A|B)] + V ar(E[A|B])

Applying this to the variance of β̂, while conditioning on the stochastic process {Xt}Tt=1,

allows us to isolate the conditional variance of Q̂Xu:

V ar(β̂) = E

V ar
(
Q̂Xu

∣∣∣{Xt}Tt=1

)
Q̂2

XX

+ V ar

Ñ
E
[
Q̂Xu

∣∣∣{Xt}Tt=1

]
Q̂XX

é
If E

[
ut|{Xs}Ts=1

]
= 0 for all t, then the second term becomes zero. However, the zero

conditional mean assumption, E[ut|Xt] = 0, to ensure unbiasedness is not sufficient for

this condition to hold. The residuals ut could still be influenced by past values of the

explanatory variable Xt−l, yet still provide an unbiased estimate of β.
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To simplify the variance, consider these assumptions:

Zero Conditional Mean (ZCM) : E[ut|Xt] = E[ut] = 0, ∀t

Strict ZCM : E
[
ut|{Xs}Ts=1

]
= E[ut] = 0, ∀t

Homoskedasticity : V ar(ut|Xt) = V ar(ut), ∀t

Strict Homoskedasticity : Cov
(
ut, us|{Xt}Tt=1

)
= Cov(ut, us), ∀t, s

No Serial Correlation : Cov(ut, us) = 0, ∀t ̸= s

Covariance Stationarity : Cov(ut, ut−l) = Cov(us, us−l), ∀t, s, l

Hence, strong ZCM ensures the elimination of the second term in the variance. Violations

of the homoskedasticity assumption are termed heteroskedasticity. Heteroskedasticity

occurs when the variability in the response variable Yt varies at different levels of the ex-

planatory variable Xt. Serial correlation, or autocorrelation, arises when residuals in a

regression model are correlated across time. If the residual process is independent and iden-

tically distributed (i.i.d.), it inherently satisfies the conditions of strong homoskedasticity,

no serial correlation, and stationarity.

Consider the conditional variance of the first term under these assumptions:

V ar
(
Q̂Xu

∣∣∣{Xt}Tt=1

)
= V ar

(
1

T

T∑
t=1

Xtut

∣∣∣∣∣{Xt}Tt=1

)

=
1

T 2

T∑
t=1

T∑
s=1

Cov
(
Xtut, Xsus

∣∣∣{Xt}Tt=1

)
=

1

T 2

T∑
t=1

T∑
s=1

XtXsCov
(
ut, us

∣∣∣{Xt}Tt=1

)
[Strong Homoskedasticity] =

1

T 2

T∑
t=1

T∑
s=1

XtXsCov(ut, us)

[No Serial Correlation] =
1

T 2

T∑
t=1

X2
t V ar(ut)

[Covariance Stationarity] =
1

T
Q̂XXV ar(ut)
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Thus, these assumptions simplify the variance of β̂ as follows:

V ar(β̂)

∣∣∣∣∣ Strong ZCM

Strong Homoskedasticity

No Serial Correlation

Stationary Residuals

=
1

T
V ar(ut)E

ñ
1

Q̂XX

ô

where V ar(ut) can be estimated using the sample residuals ût, and E
î
Q̂−1

XX

ó
can be approx-

imated with Q̂−1
XX , although not unbiasedly, since E

î
Q̂−1

XX

ó
̸= E[Q̂XX ]

−1. An alternative

involves assuming a distribution for Xt to estimate E
î
Q̂−1

XX

ó
. Note that as T → ∞ and

assuming V ar(Xt) ̸= 0, the variance of the regression coefficient approaches zero, making

it a consistent estimator under these assumptions.

While imposing those assumptions is a common way to estimate the regression coeffi-

cient in cross-sectional data, inspection of the data-generating process reveals that these

assumptions may not hold, even if ρϕγ = 0. Consequently, a different approach is necessary,

outlined in the following lemma:

Lemma 1 (Variance Approximation of Regression Coefficient).

If there exists λ and δ s.t.,

(a) lim
T→∞

E
î
T λQ̂XX

ó
> 0,

(b) lim
T→∞

V ar
Ä
T λQ̂XX

ä
= 0, and

(c) lim
T→∞

V ar
Ä
T λ−δQ̂Xu

ä
> 0,

then V ar(β̂) = V ar(Q̂Xu)

E[Q̂XX ]2
+ o

(
T−2δ

)
= O

(
T−2δ

)
.

Proof. If the convergences in (a) and (c) are towards constants a and c respectively, we

find that the first term of Var(β̂) converges to a/c2 if it is scaled by T 2δ:

lim
T→∞

T 2δ

Ç
V ar(Q̂Xu)

E[Q̂XX ]2

å
=

limT→∞ V ar
Ä
T λ−δQ̂Xu

ä
limT→∞E

î
T λQ̂XX

ó2 =
a

c2
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Thus, the first term of V ar(β̂) is O(T−2δ). The second term is defined as:

V ar

Ç
Q̂Xu

Q̂XX

å
− V ar(Q̂Xu)

E[Q̂XX ]2
= T 2δ

V arÇT λ−δQ̂Xu

T λQ̂XX

å
−
V ar
Ä
T λ−δQ̂Xu

ä
E
î
T λQ̂XX

ó2 
Given that T λQ̂XX becomes deterministic as T increases, while the variance of T λ−δQ̂Xu

remains finite, the discrepancy between the variance of β̂ and its simplified expression

diminishes. In particular, Chebyshev’s inequality ensures that T λQ̂XX converges to its

expected value as T → ∞, so that the term in brackets goes to zero, making it o(1). After

scaling the o(1) expression with T 2δ, it becomes o(T−2δ). Finally, since O(T−2δ)+o(T−2δ) =

O(T−2δ), we have proven the lemma.

This lemma demonstrates that the expression V ar(Q̂Xu)/E[Q̂XX ]
2 serves as a reliable

approximation of the variance V ar(β̂) for sufficiently large T .

Lemma 1 relates to the concept of asymptotic variance, defined as follows:

Vβ̂ =limT→∞ V ar
Ä
T δβ̂
ä
= limT→∞ T 2δ

(
V ar(Q̂Xu)

E[Q̂XX ]2

)
=
limT→∞ V ar

Ä
T λ−δQ̂Xu

ä
limT→∞E

î
T λQ̂XX

ó2
where the second equation follows from Lemma 1. The o(T−2δ) term from Lemma 1 drops

out because T−2δo(T−2δ) = o(1) → 0 as T → ∞. Estimating V ar(Q̂Xu)/E[Q̂XX ]
2 parallels

the estimation of the asymptotic variance V̂β̂ and then scaling it by T−2δ, although this

approximation might not be exact as it could include terms dependent on T , whereas V̂β̂

does not.

Let’s use Lemma 1 to derive the following expressions for the variance of β̂ depending

on the parameters ρ, ϕ, and γ of the data generating process:

V ar(β̂) =



1
T

σϵϵ(1−ρ2)(1+ρϕ)

σηη(1−ϕ2)(1−ρϕ)
+ o (T−1) if |ρ| < 1, |ϕ| < 1, ρϕγ = 0

1
T 2

2(σϵϵ+σηηγ2ϕ2)
σηη(1−ϕ)2

+ o (T−2) if ρ = 1, |ϕ| < 1, ρϕγ = 0

σϵϵ(1+ρ)2+σηηγ2

2σηη
+ o(1) if |ρ| < 1, ϕ = 1, ρϕγ = 0

σϵϵ

6σ3
ηη

+ o(1) if ρ = 1, ϕ = 1, γ = 0
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The unbiased estimator β̂ is consistent if both dependent and explanatory variables are

stationary. It becomes superconsistent if they are cointegrated, meaning the only reason Yt

is non-stationary is its dependence on Xt. In cases where the dependent variable exhibits a

stochastic trend independent of the explanatory variable, the unbiased estimator β̂ becomes

inconsistent. This means that even with an increasing amount of data, an estimated value

different from β = γ is very likely.

Note that the scenario where ρ = ϕ = 1 and γ = 0 is more problematic than the

one where the explanatory variable is stationary (|ρ| < 1). This is because standard

regression analyses typically compute the variance of the estimator assuming conditions

like strong ZCM, homoskedasticity, no serial correlation, and stationarity. In the latter

scenario, as Var(ut) increases with sample size, the estimated variance of β̂ also rises,

leading to insignificant t-values. However, in the former case where ρ = ϕ = 1 and γ = 0,

both Q̂XX and Var(ut) increase at the same rate. Consequently, the estimated variance

using the standard formula decreases with sample size, falsely suggesting that the coefficient

is significant, even if it is not. This leads to what is known as spurious regression, which

can result in misleading statistical inferences.

7.4 Vector Error Correction Model (VECM)

Consider an n-dimensional I(1) stochastic process {Yt} and assume it follows a VAR(p):

Φ(L)Yt = ut, Φ(L) = I − Φ1L− · · · − ΦpL
p

This model implies that looking at the last p lags is sufficient not only to predict short-run

fluctuations but also to capture all stochastic trends. For instance, if one of the variables is

output, then the last p years of observations are deemed sufficient to predict future output.

This assumption would not be very restrictive if the stochastic process was I(0), because,

by definition of stationarity, events from a long time ago become irrelevant. However,

since {Yt} is I(1), there are stochastic trends, meaning that past events aren’t discounted,
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and events that happened 100 years ago are still relevant today. Consequently, the model

implies that the information contained in the last p years contains all relevant information,

including information from events that happened 100 years ago.

Alternatively, one could model a VAR for the differenced series {∆Yt} and then predict

∆Yt+h. Such predictions are likely to be accurate even if the p lags do not capture all the

information, as realizations from the distant past become less relevant in stationary time

series. In this case, predictions for the level variables Yt+h can be obtained by summing

the differences: Yt + ∆Yt+1 + . . . + ∆Yt+h. However, in doing so, the missed information

from the distant past accumulates, leading to a significant bias when h is large. Hence,

estimating a VAR for the differenced series likely produces good predictions for ∆Yt+h but

bad predictions for Yt+h.

We demonstrate below that even when the level variables Yt follow a VAR, estimating a

VAR in differences and cumulating the variables results in a substantial bias. One exception

is when the VAR coincidentally has as many independent stochastic trends as variables, in

which case the VAR(p) for Yt collapses to a VAR(p− 1) for ∆Yt, as was the case in Section

4.1 where the ARMA(p, q) model for an I(1) process collapsed to an ARMA(p−1, q) for its

first difference. In general, there may be fewer stochastic trends than variables, indicating

that some of the disturbances in the model have only temporary effects. In that case, some

of the variables are cointegrated (meaning there are disturbances in the system that cause

temporary deviations from a steady state, rather than stochastic trends), and predictions

for Yt+h can be performed using a vector error correction model (VECM). However,

in either case, we would need to impose the strong assumption that the I(1) process Yt

follows a non-stationary VAR.

Let’s derive the VECM from the VAR model. As we rewrote the AR model with a

stochastic trend to perform the Dickey Fuller test in Section 4.3, we can rewrite the VAR
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model by defining a lag polynomial Γ(L) such that Φ(L) = Γ(L)(I − L) + Φ(1)L:

Γ(L)∆Yt = ΠYt−1 + ut, Γ(L) = I − Γ1L− · · · − Γp−1L
p−1

Γl = − (Φl+1 + · · ·+ Φp)

Π = − (I − Φ1 − · · · − Φp) = −Φ(1)

where

Γ(L) = [Φ(L)− Φ(1)L](I − L)−1

=
[
I − Φ1L− Φ2L

2 − · · · − ΦpL
p − Φ(1)L

] (
I + L+ L2 + · · ·

)
= I + (I − Φ1 − Φ(1))L+ · · ·+ (I − Φ1 − Φ2 − · · · − Φp−1 − Φ(1))Lp−1

+ (I − Φ1 − · · · − Φp − Φ(1))︸ ︷︷ ︸
=0

(
Lp + Lp+2 + Lp+3 + · · ·

)
= In − Γ1L− · · · − Γp−1L

p−1, Γl = Φl+1 + Φl+2 + · · ·+ Φp

For those not comfortable with the above derivation, consider the VAR:

Yt = Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦpYt−p + ut

Using Yt = Yt−1 +∆Yt and Yt−k = Yt−1 −
∑k−1

s=1 ∆Yt−k, for k ≥ 2, we have:

∆Yt = ΠYt−1 + Γ1∆Yt−1 + Γ2∆Yt−2 + · · ·+ Γp−1∆Yt−(p−1) + ut

where Π and Γl can be derived by comparing the two systems.

In the univariate case, the only way Yt−1 has a stochastic trend but ∆Yt doesn’t is

if Π = 0. However, in the multivariate case, it’s possible that there are cointegrated

relationships β′Yt among Yt, so that ∆Yt may depend on β′Yt−1 and thus depends on Yt−1,

but still be stationary. Hence, Π does not need to be zero for ∆Yt to be stationary.

However, note that the matrix Π cannot have full rank, as this would imply that both

the level and differenced variables are either stationary or non-stationary. Given that a full
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rank would make the matrix Π invertible, one could express the level variables in terms of

the differenced variables and the stationary shocks. Consequently, the level variables could

only be I(1) if the differenced variables are I(1) as well.

If it does happen that Yt is I(1), ∆Yt is I(0), and Π as full rank, one would have

to conclude that the assumption of Yt following a non-stationary VAR(p) - and thus a

VECM(p− 1) - is violated. In such a situation, a possible remedy could be to increase the

lag order p until Π no longer has full rank. This stems from Wold’s decomposition theorem,

according to which there exists a VMA(∞) and and thus a VAR(∞) representation for

∆Yt, leading to a rank of Π equal to zero when the lag order approaches infinity. Thus, it’s

possible that the rank eventually decreases as the lag order increases.

It turns out that the rank of Π reveals the number of cointegrated relationships. For

example, suppose there are r cointegrated relationships, and let’s combine those into an

n× r matrix β so that β′Yt is a r-dimensional vector of stationary processes. Then we have

that rank(Π) = r because there are r linearly independent ways ∆Yt can depend on Yt−1

and still be stationary, given that there are r cointegrated relationships. Therefore, if Π had

a rank larger than r, ∆Yt would also depend on the part of Yt−1 that is not cointegrated,

resulting in a non-stationary ∆Yt.

To extract the cointegrated relationships β, we decompose the n× n matrix Π of rank

r into two n× r matrices α and β:

Π = αβ′

This so-called rank factorization always exists, but it is not unique. One can redefine

the matrices α∗ = αM ′ and β∗ = βM−1, where M is any non-singular r × r matrix, and

still obtain Π = α∗β∗′ .

Replacing Π with αβ′ gives us the vector error correction model (VECM):

∆Yt = αβ′Yt−1 + Γ1∆Yt−1 + Γ2∆Yt−2 + · · ·+ Γp−1∆Yt−(p−1) + ut

where β′Yt are r stationary processes, representing temporary deviations from cointegrated
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relationships. The term β′Yt is sometimes referred to as the error correction term

(ECT), α is known as the loading matrix, and β =
[
β1 · · · βr

]
is the cointegration

matrix, where each column βj represents a different cointegrating relationship.

If there are no deviations from the cointegrating relationships, then β′Yt = 0. Since

these deviations are stationary and therefore only temporary, we have that the predicted

deviations in the long run are zero, i.e. lim
h→∞

Et [β
′Yt+h] = 0. Note that increasing the size

of the loading matrix α makes deviations β′Yt from the cointegrating relationship less

persistent, resulting in the variables reverting back to the long-run equilibrium faster.

Because α and β are not unique, it is common to apply some normalizations. If the

variables in Yt are ordered in a way that the first r variables contribute to at least one coin-

tegrating relationship, and if combined they contribute to all r cointegrated relationships,

then there exists a non-singular r×r matrixM such that β∗ = βM−1 =

Ir
γ

, where γ is an

(n−r)×r matrix. For example, M may consist of the first r rows of β. This normalization

allows for the following triangular representation of a cointegrated system:

Y
(1)
t = − γ′Y

(2)
t + Z

(1)
t

∆Y
(2)
t = Z

(2)
t

where Z
(1)
t = β∗′Yt captures all the cointegrated relationships, and Y

(2)
t represents the

I(1) stochastic trends. Zt =
[
Z

(1)′
t Z

(2)′
t

]′
is a stationary process as it only depends on

stationary cointegrated relationships and differenced I(1) processes.

Another useful representation of a cointegrated system is its Beveridge-Nelson decom-

position, which rewrites the system as an infinite MA process, where some of the shocks

are integrated. The Beveridge-Nelson decomposition of a VECM is often referred to as

the Granger Representation Theorem, introduced by Johansen (1995), Theorem 4.2.

To derive this representation, let M⊥ be the orthogonal complement of the n × r matrix

M with rank(M) = r, such that M ′M⊥ = 0. If M is a nonsingular square matrix, then

M⊥ = 0, and if r = 0, we define M⊥ = In.
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In the triangular representation, we defined Zt such that Z
(1)
t = λ′Zt = β∗′Yt captures

the stationary cointegrated relationships, and Z
(2)
t = λ′⊥Zt = λ′⊥∆Yt represents the first

difference of the stochastic trends, where λ′ =
[
Ir 0

]
, and λ′⊥ =

[
0 In−r

]
. Unlike in the

triangular representation, the goal here is to find a stationary stochastic process Zt that

captures all cointegrated relationships and stochastic trends without requiring any specific

ordering of Yt. We can achieve that by defining Zt using λ = β:

β′Zt = β′Yt

β′
⊥Zt = β′

⊥∆Yt

 ⇒ Zt = β (β′β)
−1
β′Yt + β⊥ (β′

⊥β⊥)
−1
β′
⊥∆Yt

where β′Zt captures the cointegrated relationships, and β′
⊥Zt captures the stochastic trends.

Since Zt is stationary, it has a VMA(∞) representation by Wold’s decomposition theo-

rem. The goal is to derive this representation in terms of the VECM residuals ut and then

compute the Beveridge-Nelson decomposition of Yt by integrating the VMA representation

of Zt.

To express Zt as a function of Yt, define β and Q as follows:

β = β (β′β)
−1
, Q =

 β′

β
′
⊥

 , Q−1Q = QQ−1 = Ir ⇒ Q−1 =
[
β β⊥

]

which then implies the following relationship between Zt and Yt:

Zt = ββ′Yt + β⊥β
′
⊥∆Yt

= Q−1P (L)Yt, P (L) =

 β′

(1− L) β
′
⊥

 =

Ir 0

0 (1− L) In−r

Q
where P (L) is a lag polynomial.

Next, to relate Zt to the VECM residuals ut, let’s rewrite the VECM so that the lag
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polynomial includes P (L):

Ψ (L)Yt = ut, Ψ(L) = Γ (L) (1− L)− αβ′L

= (Γ (L) (1− L)− αβ′L)Q−1Q

= (Γ (L) (1− L)− αβ′L)
[
β β⊥

]
Q

=
[
Γ (L) β (1− L)− αL Γ (L) β⊥

] β′

(1− L) β
′
⊥


= M (L)P (L)

and therefore,

M (L)P (L)Yt = ut

M (L)QQ−1P (L)Yt = ut

B (L)Zt = ut, B (L) = M (L)Q

= Γ (L) ββ′ (1− L)− αβ′L+ Γ (L) β⊥β
′
⊥

Thus Zt follows a stable VAR(p) process with the same residual process ut as Yt. Because

it’s stable, it has an MA(∞) representation:

Zt = Θ(L)ut, Θ(z) = B (z)−1 = Q−1M (z)−1 , ∀ |z| ≤ 1

where Θ (L) is a lag polynomial of infinite order.

Since Yt depends on the integral of Zt, let’s compute the Beveridge-Nelson decom-

position of the integral of Zt (see Section 4.2 for the univariate version of this Beveridge-
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Nelson decomposition):

t∑
s=1

Zs =
t∑

s=1

Θ(L)us

=
t∑

s=1

(Θ∗ (L) (1− L) + Θ (1))us, Θ∗ (L) = (Θ (L)−Θ(1)) (In − L)−1

= Θ(1)
t∑

s=0

us +Θ∗ (L)
t∑

s=1

∆us

= Θ(1)
t∑

s=0

us +Θ∗ (L) (ut − u0)

where Θ∗ (L)u0 +Θ(1)
∑t

s=0 us captures the permanent effects of the shocks, and Θ∗ (L)ut

captures the transitory effects.

Next, let’s write ∆Yt in terms of Zt:

∆Yt = Q−1Q∆Yt

= ββ′∆Yt + β⊥β
′
⊥∆Ytî

Zt = ββ′Yt + β⊥β
′
⊥∆Yt

ó
= ββ′∆Yt + Zt − ββ′Yt

= ββ′ (Yt − Yt−1) + Zt − ββ′Yt

[β′Zt = β′Yt] = Zt − ββ′Zt−1

Thus, multiplying both sides by β⊥β
′
⊥ reveals that β⊥β

′
⊥∆Yt = β⊥β

′
⊥Zt, and therefore:

∆Yt = ββ′∆Yt + β⊥β
′
⊥Zt
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Finally, let’s write Yt in terms of Zt and thus ut by integrating ∆Yt:

Yt = Y0 +
t∑

s=1

∆Ys

= Y0 +
t∑

s=1

Ä
ββ′∆Ys + β⊥β

′
⊥Zs

ä
= Y0 + ββ′ (Yt − Y0) + β⊥β

′
⊥

t∑
s=1

Zs

= Y0 + ββ′Zt − ββ′Y0 + β⊥β
′
⊥Θ(1)

t∑
s=0

us + β⊥β
′
⊥Θ

∗ (L) (ut − u0)

= Y0 − ββ′Y0 − β⊥β
′
⊥Θ

∗ (L)u0 + β⊥β
′
⊥Θ(1)

t∑
s=0

us +
Ä
β⊥β

′
⊥Θ

∗ (L) + ββ′Θ(L)
ä
ut

which is the Beveridge-Nelson decomposition of Yt.

Finally, let’s use the same notation for the Beveridge-Nelson decomposition as in the

Granger Representation Theorem, by Johansen (1995), Theorem 4.2 (see also Lütkepohl

(2006), p. 244 - 256):

Yt = Y ∗
0 + Σ

t∑
s=0

us + Σ∗ (L)ut

where

Y ∗
0 = Y0 − ββ′Y0 − β⊥β

′
⊥Θ

∗ (L)u0

Σ∗ (L) = β⊥β
′
⊥Θ

∗ (L) + ββ′Θ(L)
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and

Σ = β⊥β
′
⊥Θ(1)

= β⊥β
′
⊥B (1)−1

= β⊥β
′
⊥Q

−1M (1)−1

= β⊥β
′
⊥

[
β β⊥

] [
−α Γ (1) β⊥

]−1

= β⊥

[
0 In−r

] [
−α Γ (1) β⊥

]−1

= β⊥

[
0 In−r

](α′α)−1 α′
Ä
Γ (1) β⊥ (α′

⊥Γ (1) β⊥)
−1 α′

⊥ − In
ä

(α′
⊥Γ (1) β⊥)

−1 α′
⊥


= β⊥ (α′

⊥Γ (1) β⊥)
−1
α′
⊥

where Y ∗
0 + Σ

∑t
s=0 us captures the permanent effects and Σ∗(L)ut captures the temporary

effects.

A key insight of the Granger Representation Theorem is that β⊥ and thus Σ have rank

n− r, representing the n− r stochastic trends. This implies that the permanent effects are

restricted, allowing for no more than n − r independent movements in the long-run. On

the other hand, in the short-run, there are n independent movements arising from both the

n−r stochastic trends and the r temporary disturbances of the r cointegrated relationships.

7.5 Deterministic Trends in VECMs

In Section 4.2, we discovered that adding a deterministic trend δk(t) that follows a poly-

nomial of degree k to an ARIMA(p, d, q) model causes the deterministic trend to become

a polynomial of degree k + d, because the stochastic trends cause additional deterministic

movements. In this section, we will show that something similar happens when adding a

deterministic trend δk(t) to a VECM. However, since there are only n− r stochastic trends

in a VECM with r cointegrated relationships, we end up with n − r deterministic trends

that are polynomials of degree k + 1, and r deterministic trends that remain polynomials

of degree k. We will discuss under what circumstances this assumption makes sense and

how to include a deterministic trend into a VECM so that all deterministic trends are
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polynomials of the same degree.

Suppose the I (1) stochastic process {Yt} follows a VAR(p) model with deterministic

trends:

VAR : Φ (L)Yt = δk (t) + ut,

VECM : Ψ (L)Yt = δk (t) + ut, Ψ(L) = Γ (L) (1− L)− αβ′L

Γ (L) = (Φ (L)− Φ (1)L) (I − L)−1

αβ′ = Φ(1)

where δk(t) = δ0 + δ1t + . . . + δkt
k is a polynomial of degree k with n × 1 vectors δi, for

i = 0, . . . , k. Here, Φ(L) and Ψ(L) are lag polynomials representing the non-stationary

VAR and VEC models, respectively.

This results in the following Beveridge-Nelson representation:

Yt = Y ∗
0 + β⊥β

′
⊥

t∑
s=0

δk (s) + ββ′δk (t) + Σ
t∑

s=0

us + Σ∗ (L)ut

= Y ∗
0 + β⊥θ

k+1 (t) + βκk (t) + Σ
t∑

s=0

us + Σ∗ (L)ut

where θk+1(t) = θ0 + θ1t + . . . + θk+1t
k+1 is a polynomial of degree k + 1 with (n− r)× 1

vectors θi, and κ
k(t) = κ0 + κ1t+ . . .+ κkt

k is a polynomial of degree k with r× 1 vectors

κi. Hence, the system is driven by n − r deterministic trends that are more sophisticated

due to the n− r stochastic trends, and r trends that are less sophisticated.

For example, if we have δ0(t) = δ0, then all n variables can have different means,

but they can only depend on n − r distinct linear trends. This assumption makes sense

when the linear trends are orthogonal to the cointegrated relationships, meaning that the

deviations from the cointegrated relationship converge to a constant in the long run, rather

than converging to a linear trend. However, if the cointegrated relationships exhibit a linear

divergence, then such trends need to be included in the cointegrated relationships, resulting

in n different linear trends rather than n− r. This makes sense, for example, if output and
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technology are cointegrated, but unlike technology, output experiences an additional 1%

growth each year due to deterministic population growth.

We can model the deterministic trends independently of the stochastic trends by as-

suming that the detrended series follows a VECM without deterministic trend:

Γ (L)∆Xt = αβ′Xt−1 + ut, Xt = Yt − µk(t)

where µk(t) = µ0 + µ1t+ . . .+ µkt
k is a polynomial of degree k with n × 1 vectors µi, for

i = 0, . . . , k.

This results in the following VECM for Yt:

Γ (L)∆Yt = Γ (L)∆µk(t) + αβ′ (Yt−1 − µk(t− 1)
)
+ ut

= Γ (L)∆µk(t)− αβ′
k−1∑
s=0

µs (t− 1)s + α
[
β′ −β′µk

] Yt−1

(t− 1)k

+ ut

= δk−1 (t) + αλ′

Yt−1

tk

+ ut

where λ′ =
[
β′ η

]
is a r× (n+ 1) dimensional matrix with an unrestricted r-dimensional

vector η = −β′µk, and δ
k−1(t) is an unrestricted polynomial of degree k− 1. Note that the

degree of δk−1(t) is k − 1 because differencing a polynomial of degree k results in reducing

the degree by one, i.e., ∆µk(t) is a polynomial of degree k − 1.

The r cointegrated relationships now also include tk so that the deterministic deviations

from the cointegrated relationships become as sophisticated as the deterministic compo-

nents of the stochastic trends. The result is a Beveridge-Nelson representation with an

unrestricted polynomial of degree k, unlike the Beveridge-Nelson representation with two

polynomials of varying degrees when the deterministic trend is included directly in the

VECM.
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7.6 Testing for Rank of Cointegration

If the number of cointegrating relationships r isn’t known, it can be determined by esti-

mating the VECM and then testing the rank of Π. It’s more common to assume that the

detrended series follow a VECM, hence, the rank of Π is tested based on the following

VECM for Yt, as per Section 7.5:

Γ(L)∆Yt = δk−1(t) + Π+Y +
t−1 + ut, Π+ = αλ′, Y +

t−1 =

Yt−1

tk


However, if the deterministic trend is included directly in the VECM, being orthogonal to

the cointegrating relationships, then we’d have Π+ = αβ′, and Y +
t−1 = Yt−1, according to

Section 7.5.

A smaller rank of Π+ implies that the model is more restricted than a higher rank. A

likelihood ratio (LR) test, which tests a more restricted model against a more general

model, can be conducted. The problem is that the distribution of the LR statistic depends

on the rank of Π+ in the general model, hence, we have to specify the possible ranks of the

alternative hypothesis.

Two different types of hypotheses are common in the related literature. First, the trace

statistic λLR(r0, n) tests whether Π
+ has a rank of r0 against a rank larger than r0:

H0 : rank
(
Π+
)
= r0, H0 : r0 < rank

(
Π+
)
≤n

and the maximum eigenvalue statistic λLR(r0, r0 + 1) tests whether Π+ has a rank of

r0 against a rank of r0 + 1:

H0 : rank
(
Π+
)
= r0, H0 : rank

(
Π+
)
= r0 + 1

The strategy to determine the rank of Π+ is to start at r0 = 0, and then increment r0 by

one until the null hypothesis cannot be rejected for the first time. The cointegrating rank
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is then chosen accordingly. This strategy works for both the maximum eigenvalue and the

trace test.

7.7 Structural Vector Error Correction Model (SVECM)

In Section 6.4, we discussed how the exploration of causal relationships in VARs requires

the identification of an impulse vector, which shifts the variables in a meaningful way

upon impact. The impulse response function (IRF) then measures the causal effect of the

exogenous event that triggered the impulse.

Similar to Section 6.4, we can identify impulse vectors by decomposing the residuals of

the VECM into uncorrelated shocks:

ut = Aϵt

where A is the impact matrix, and its columns represent the impulse vectors for each of the

n shocks. The resulting system of equations, where the VECM residuals ut are replaced

with Aϵt, is referred to as a structural vector error correction model (SVECM).

As in the VAR, the VECM identifies the residual covariance matrix Σ = Cov(ut), which

is an n× n symmetric matrix. Thus, we require an additional n(n−1)
2

equations to identify

the n× n impact matrix A, which is not symmetric.

In the SVECM literature, a common approach is to partition the n shocks into tran-

sitory and permanent shocks. The transitory shocks cause temporary deviations from the

cointegrated relationships, while the permanent shocks contribute to the stochastic trends.

From the Beveridge-Nelson representation, we can express the relationship between the

shocks and the stochastic trends as follows:

Σ
t∑

s=0

us = ΣA
t∑

s=0

ϵs

If there are r cointegrated relationships, then there are n− r stochastic trends. Therefore,
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we can assume that only the first n − r shocks contribute to the stochastic trends, while

the remaining r shocks only cause temporary deviations in the cointegrated relationships.

This implies that the last r columns of ΣA are all zero. Although this results in nr zero

elements in ΣA, we only obtain (n− r)r independent zero restrictions, because the matrix

Σ has a rank of n− r, meaning that there are only n− r independent rows in Σ and ΣA.

To understand why we only get (n− r)r independent restrictions, let’s perform the rank

decomposition of Σ = λκ′, where λ and κ are n× (n− r) matrices. We can then choose

A such that the last r columns of the (n− r)× n matrix κ′A are zero, which results in

(n− r)r zero restrictions. This implies that the last r columns of ΣA = λκ′A are zero as

well. Hence, we need n(n−1)
2

− (n− r)r additional restrictions for identification.

It is important to note that the partition into transitory and permanent shocks does

not always make sense. For example, in a VECM with only one stochastic trend resulting

from the cumulative property of technological progress, multiple shocks may independently

shift technology. In this case, each shock can have its own long-run effect, but the long-run

effect of the shocks on the other variables will always be the same function of their overall

effect on technology.
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